Strong computability of slices over the logic $\mathrm{GL}$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 35-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

In [2] the classification of extensions of the minimal logic $\mathrm{J}$ using slices was introduced and decidability of the classification was proved. We will consider extensions of the logic $ \mathrm{GL} = \mathrm{J} + (A \vee \neg A) $. The logic $\mathrm{GL}$ and its extensions have been studied in [8, 9]. In [6], it is established that the logic $\mathrm{GL}$ is strongly recognizable over $\mathrm{J}$, and the family of extensions of the logic $\mathrm{GL}$ is strongly decidable over $\mathrm{J}$. In this paper we prove strong decidability of the classification over $\mathrm{GL}$: for every finite set $ Rul $ of axiom schemes and rules of inference, it is possible to efficiently calculate the slice number of the calculus obtained by adding $ Rul $ as new axioms and rules to $\mathrm{GL}$.
Keywords: The minimal logic, slices, Kripke frame, decidability, recognizable logic.
@article{SEMR_2018_15_a2,
     author = {L. L. Maksimova and V. F. Yun},
     title = {Strong computability of slices over the logic $\mathrm{GL}$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {35--47},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a2/}
}
TY  - JOUR
AU  - L. L. Maksimova
AU  - V. F. Yun
TI  - Strong computability of slices over the logic $\mathrm{GL}$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 35
EP  - 47
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a2/
LA  - ru
ID  - SEMR_2018_15_a2
ER  - 
%0 Journal Article
%A L. L. Maksimova
%A V. F. Yun
%T Strong computability of slices over the logic $\mathrm{GL}$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 35-47
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a2/
%G ru
%F SEMR_2018_15_a2
L. L. Maksimova; V. F. Yun. Strong computability of slices over the logic $\mathrm{GL}$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 35-47. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a2/

[1] I. Johansson, “Der Minimalkalkül, ein reduzierter intuitionistischer Formalismus”, Compositio Mathematica, 4 (1937), 119–136 | MR

[2] L. Maksimova, V. Yun, “Slices over minimal logic”, Algebra i Logica, 55:4 (2016), 449–464 | MR | Zbl

[3] T. Hosoi, “On intermediate logics. I”, J. Faculty of Science Univ. Tokyo, Sec. Ia, 14 (1967), 293–312 | MR

[4] L.L. Maksimova, “The structure of slices over minimal logic”, Sibirskii Matematicheskii Zhurnal, 57:5 (2016), 1078–1087 | MR | Zbl

[5] L. Maksimova, “Strongly Decidable Properties of Modal and Intuitionistic Calculi”, Logic Journal of IGPL, 8:6 (2000), 797–819 | MR | Zbl

[6] L. Maksimova, V. Yun, “Strong decidability and strong recognizability”, Algebra i Logica, 56:5 (2017), 559–581

[7] L.L. Maksimova, V.F. Yun, “Slices and levels of extensions of the minimal logic”, Siberian Mathematical Journal, 58:6 (2017), 1341–1353

[8] S. Odintsov, Constructive negations and paraconsistency, Trends in Logic, 26, Springer, Dordrecht, 2008 | MR | Zbl

[9] L. Maksimova, “Interpolation and definability over the logic Gl”, Studia Logica, 99:1–3 (2011), 249–267 | MR | Zbl

[10] L.L. Maksimova, V.F. Yun, “Recognizable logics”, Algebra i Logica, 54:2 (2015), 252–274 | MR | Zbl

[11] K. Segerberg, “Propositional logics related to Heyting's and Johansson's”, Theoria, 34 (1968), 26–61 | MR

[12] L.L. Maksimova, “A method of proving interpolation in paraconsistent extensions of the minimal logic”, Algebra i Logika, 46:5 (2007), 627–648 | MR | Zbl

[13] L.L. Maksimova, “Pretabular superintuitionistic logics”, Algebra i Logika, 11:5 (1972), 558–570 | MR | Zbl

[14] D.M. Gabbay, L. Maksimova, Interpolation and Definability: Modal and Intuitionistic Logics, Oxford Logic Guides, 46, Clarendon Press, Oxford, 2005 | MR | Zbl