Finding $2^{\aleph_0}$ countable models for ordered theories
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 719-727

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is focused on finding conditions that imply small theories of linear order have the maximum number of countable non-isomorphic models. We introduce the notion of extreme triviality of non-principal types, and prove that a theory of order, which has such a type, has $2^{\aleph_0}$ countable non-isomorphic models.
Keywords: countable model, linear order, omitting types.
@article{SEMR_2018_15_a19,
     author = {B. Baizhanov and J. T. Baldwin and T. Zambarnaya},
     title = {Finding $2^{\aleph_0}$ countable models for ordered theories},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {719--727},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a19/}
}
TY  - JOUR
AU  - B. Baizhanov
AU  - J. T. Baldwin
AU  - T. Zambarnaya
TI  - Finding $2^{\aleph_0}$ countable models for ordered theories
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 719
EP  - 727
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a19/
LA  - en
ID  - SEMR_2018_15_a19
ER  - 
%0 Journal Article
%A B. Baizhanov
%A J. T. Baldwin
%A T. Zambarnaya
%T Finding $2^{\aleph_0}$ countable models for ordered theories
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 719-727
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a19/
%G en
%F SEMR_2018_15_a19
B. Baizhanov; J. T. Baldwin; T. Zambarnaya. Finding $2^{\aleph_0}$ countable models for ordered theories. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 719-727. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a19/