Finding $2^{\aleph_0}$ countable models for ordered theories
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 719-727.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is focused on finding conditions that imply small theories of linear order have the maximum number of countable non-isomorphic models. We introduce the notion of extreme triviality of non-principal types, and prove that a theory of order, which has such a type, has $2^{\aleph_0}$ countable non-isomorphic models.
Keywords: countable model, linear order, omitting types.
@article{SEMR_2018_15_a19,
     author = {B. Baizhanov and J. T. Baldwin and T. Zambarnaya},
     title = {Finding $2^{\aleph_0}$ countable models for ordered theories},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {719--727},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a19/}
}
TY  - JOUR
AU  - B. Baizhanov
AU  - J. T. Baldwin
AU  - T. Zambarnaya
TI  - Finding $2^{\aleph_0}$ countable models for ordered theories
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 719
EP  - 727
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a19/
LA  - en
ID  - SEMR_2018_15_a19
ER  - 
%0 Journal Article
%A B. Baizhanov
%A J. T. Baldwin
%A T. Zambarnaya
%T Finding $2^{\aleph_0}$ countable models for ordered theories
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 719-727
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a19/
%G en
%F SEMR_2018_15_a19
B. Baizhanov; J. T. Baldwin; T. Zambarnaya. Finding $2^{\aleph_0}$ countable models for ordered theories. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 719-727. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a19/

[1] L. Mayer, “Vaught's conjecture for $o$-minimal theories”, Journal of Symbolic Logic, 53:1 (1988) | DOI | MR | Zbl

[2] S.V. Sudoplatov, B.Sh. Kulpeshov, “Vaught's conjecture for quite $o$-minimal theories”, Annals of Pure and Applied Logic, 168:1 (2017) | MR | Zbl

[3] M. Rubin, “Theories of linear order”, Israel Journal of Mathematics, 17:4 (1974) | DOI | MR

[4] C.C. Chang, H.J. Keisler, Model Theory, Studies in Logic and the Foundations of Mathematics, 73, Elsevier, 1990 | MR

[5] B.S. Baizhanov, “Orthogonality of one-types in weakly o-minimal theories”, Algebra and Model Theory 2, Collection of papers, eds. A. G. Pinus, K. N. Ponomaryov, NSTU, Novosibirsk, 1999, 5–28 | MR

[6] B.S. Baizhanov, B.Sh. Kulpeshov, “On behaviour of 2-formulas in weakly o-minimal theories”, Mathematical Logic in Asia, Proceedings of the 9th Asian Logic Conference, eds. S. Goncharov, R. Downey, H. Ono, World Scientific, Singapore, 2006, 31–40 | DOI | MR | Zbl

[7] A.A. Alibek, B.S. Baizhanov, T.S. Zambarnaya, “Discrete order on a definable set and the number of models”, Matematicheskij zhurnal, 14:3 (2014), 5–13 | Zbl