@article{SEMR_2018_15_a19,
author = {B. Baizhanov and J. T. Baldwin and T. Zambarnaya},
title = {Finding $2^{\aleph_0}$ countable models for ordered theories},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {719--727},
year = {2018},
volume = {15},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a19/}
}
TY - JOUR
AU - B. Baizhanov
AU - J. T. Baldwin
AU - T. Zambarnaya
TI - Finding $2^{\aleph_0}$ countable models for ordered theories
JO - Sibirskie èlektronnye matematičeskie izvestiâ
PY - 2018
SP - 719
EP - 727
VL - 15
UR - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a19/
LA - en
ID - SEMR_2018_15_a19
ER -
B. Baizhanov; J. T. Baldwin; T. Zambarnaya. Finding $2^{\aleph_0}$ countable models for ordered theories. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 719-727. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a19/
[1] L. Mayer, “Vaught's conjecture for $o$-minimal theories”, Journal of Symbolic Logic, 53:1 (1988) | DOI | MR | Zbl
[2] S.V. Sudoplatov, B.Sh. Kulpeshov, “Vaught's conjecture for quite $o$-minimal theories”, Annals of Pure and Applied Logic, 168:1 (2017) | MR | Zbl
[3] M. Rubin, “Theories of linear order”, Israel Journal of Mathematics, 17:4 (1974) | DOI | MR
[4] C.C. Chang, H.J. Keisler, Model Theory, Studies in Logic and the Foundations of Mathematics, 73, Elsevier, 1990 | MR
[5] B.S. Baizhanov, “Orthogonality of one-types in weakly o-minimal theories”, Algebra and Model Theory 2, Collection of papers, eds. A. G. Pinus, K. N. Ponomaryov, NSTU, Novosibirsk, 1999, 5–28 | MR
[6] B.S. Baizhanov, B.Sh. Kulpeshov, “On behaviour of 2-formulas in weakly o-minimal theories”, Mathematical Logic in Asia, Proceedings of the 9th Asian Logic Conference, eds. S. Goncharov, R. Downey, H. Ono, World Scientific, Singapore, 2006, 31–40 | DOI | MR | Zbl
[7] A.A. Alibek, B.S. Baizhanov, T.S. Zambarnaya, “Discrete order on a definable set and the number of models”, Matematicheskij zhurnal, 14:3 (2014), 5–13 | Zbl