Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a18, author = {N. V. Maslova}, title = {Classification of maximal subgroups of odd index in finite simple classical groups: addendum}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {707--718}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a18/} }
TY - JOUR AU - N. V. Maslova TI - Classification of maximal subgroups of odd index in finite simple classical groups: addendum JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2018 SP - 707 EP - 718 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a18/ LA - en ID - SEMR_2018_15_a18 ER -
N. V. Maslova. Classification of maximal subgroups of odd index in finite simple classical groups: addendum. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 707-718. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a18/
[1] M. Aschbacher, “On the maximal subgroups of the finite classical groups”, Invent. Math., 76:3 (1984), 469–514 | DOI | MR | Zbl
[2] J.N. Bray, D.F. Holt, C.M. Roney-Dougal, The maximal subgroups of the low-dimensional finite classical groups, Cambridge Univ. Press, Cambridge, 2013 | MR | Zbl
[3] N. Burgoyne, B. L. Griess , R. Lyons, “Maximal subgroups and automorphisms of Chevalley groups”, Pacific. J. Math., 71:2 (1977), 365–403 | DOI | MR | Zbl
[4] J.H. Conway, et. al., Atlas of finite groups, Oxford University Press, Eynsham, 1985 | MR | Zbl
[5] W.M. Kantor, “Primitive permutation groups of odd degree, and an application to finite projective planes”, J. Algebra, 106:1 (1987), 15–45 | DOI | MR | Zbl
[6] P. Kleidman, The subgroup structure of some finite simple groups, Ph. D. Thesis, Cambridge Univ., Cambridge, 1986
[7] P. B. Kleidman, M. Liebeck, “The subgroup structure of the finite classical groups”, Lond. Math. Soc. Lect. Note Ser., 129, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl
[8] M.W. Liebeck, J. Saxl, “The primitive permutation groups of odd degree”, J. Lond. Math. Soc., II. Ser., 31:2 (1985), 250–264 | DOI | MR | Zbl
[9] Tr. Inst. Mat. Mekh. (Ekaterinburg), 14, no. 4, 2008, 100–118 | DOI | MR
[10] Tr. Inst. Mat. Mekh. (Ekaterinburg), 16, no. 3, 2010, 182–184 | DOI | MR | Zbl