Classification of maximal subgroups of odd index in finite simple classical groups: addendum
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 707-718.

Voir la notice de l'article provenant de la source Math-Net.Ru

A classification of maximal subgroups of odd index in finite simple groups was obtained by M. Liebeck and J. Saxl and, independently, by W. Kantor in 1980s. In the cases of alternating groups and classical groups of Lie type over fields of odd characteristics, the classification was not complete. The classification was completed by the author in 2008. In the cases of finite simple classical groups of Lie type we referred to results obtained in P. Kleidman's PhD thesis. However, it turned out that the thesis contains a number of flaws that were corrected by J. Bray, D. Holt, and C. Roney–Dougal in 2013. Due to uncovered circumstances, in this note we provide a revision of our classification.
Keywords: finite simple group, classical group, maximal subgroup, odd index.
Mots-clés : primitive permutation group
@article{SEMR_2018_15_a18,
     author = {N. V. Maslova},
     title = {Classification of maximal subgroups of odd index  in finite simple classical groups: addendum},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {707--718},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a18/}
}
TY  - JOUR
AU  - N. V. Maslova
TI  - Classification of maximal subgroups of odd index  in finite simple classical groups: addendum
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 707
EP  - 718
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a18/
LA  - en
ID  - SEMR_2018_15_a18
ER  - 
%0 Journal Article
%A N. V. Maslova
%T Classification of maximal subgroups of odd index  in finite simple classical groups: addendum
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 707-718
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a18/
%G en
%F SEMR_2018_15_a18
N. V. Maslova. Classification of maximal subgroups of odd index  in finite simple classical groups: addendum. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 707-718. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a18/

[1] M. Aschbacher, “On the maximal subgroups of the finite classical groups”, Invent. Math., 76:3 (1984), 469–514 | DOI | MR | Zbl

[2] J.N. Bray, D.F. Holt, C.M. Roney-Dougal, The maximal subgroups of the low-dimensional finite classical groups, Cambridge Univ. Press, Cambridge, 2013 | MR | Zbl

[3] N. Burgoyne, B. L. Griess , R. Lyons, “Maximal subgroups and automorphisms of Chevalley groups”, Pacific. J. Math., 71:2 (1977), 365–403 | DOI | MR | Zbl

[4] J.H. Conway, et. al., Atlas of finite groups, Oxford University Press, Eynsham, 1985 | MR | Zbl

[5] W.M. Kantor, “Primitive permutation groups of odd degree, and an application to finite projective planes”, J. Algebra, 106:1 (1987), 15–45 | DOI | MR | Zbl

[6] P. Kleidman, The subgroup structure of some finite simple groups, Ph. D. Thesis, Cambridge Univ., Cambridge, 1986

[7] P. B. Kleidman, M. Liebeck, “The subgroup structure of the finite classical groups”, Lond. Math. Soc. Lect. Note Ser., 129, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl

[8] M.W. Liebeck, J. Saxl, “The primitive permutation groups of odd degree”, J. Lond. Math. Soc., II. Ser., 31:2 (1985), 250–264 | DOI | MR | Zbl

[9] Tr. Inst. Mat. Mekh. (Ekaterinburg), 14, no. 4, 2008, 100–118 | DOI | MR

[10] Tr. Inst. Mat. Mekh. (Ekaterinburg), 16, no. 3, 2010, 182–184 | DOI | MR | Zbl