Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a17, author = {O. V. Chermnykh}, title = {Functional representations of lattice-ordered semirings. {II}}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {677--684}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a17/} }
O. V. Chermnykh. Functional representations of lattice-ordered semirings. II. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 677-684. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a17/
[1] V. V. Chermnykh, O. V. Chermnykh, “Functional representations of lattice-ordered semirings”, Siberian Electronic Mathematical Reports, 14 (2017), 946–971 | MR | Zbl
[2] K. Keimel, “The representation of lattice ordered groups and rings by sections in sheaves”, Lect. Notes Math., 248, 1971, 1–98 | DOI | MR | Zbl
[3] R. S. Pierce, “t Modules over commutative regular rings”, Mem. Amer. Math. Soc., 70, 1967, 1–112 | MR | Zbl
[4] V. V. Chermnykh, “Functional representations of semirings”, Fundament. i prikl. matemat., 17:3 (2012), 111–227 | MR | Zbl
[5] P. R. Rao, “Lattice ordered semirings”, Math. Sem. Notes, Kobe Univ., 9 (1981), 119–149 | MR | Zbl
[6] B. A. Davey, “Sheaf spaces and sheaves of universal algebras”, Math. Z., 134:4 (1973), 275–290 | DOI | MR | Zbl
[7] L. Fuchs, Partially ordered algebraic systems, Pergamon Press, Oxford–London–New York–Paris, 1963 | MR | Zbl
[8] G. Birkhoff, R. S. Pierce, “Lattice-ordered rings”, An. Acad. Brasil. Ci., 28 (1956), 41–69 | MR | Zbl
[9] J. E. Diem, “A radical for lattice-ordered ring”, Pacific J. Math., 25:1 (1968), 71–82 | DOI | MR | Zbl
[10] G. Birkhoff, Lattice Theory, Amer. Math. Soc., Providence, R.I., 1967 | MR | Zbl