On finite groups isospectral to the simple groups~$S_4(q)$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 570-584.

Voir la notice de l'article provenant de la source Math-Net.Ru

The spectrum of a finite group is the set of its element orders. A finite group $G$ is critical with respect to a subset $\omega$ of the natural numbers if $\omega$ coincides with the spectrum of $G$ and does not coincide with the spectra of proper sections of $G$. We study the structure of groups with spectra equal to the spectra of the simple symplectic groups $PSp(4,q)$, where $q > 3$ and $q \neq 5$. In particular, we describe the structure of the groups critical with respect to the spectra of $PSp(4,q)$.
Keywords: finite group, spectrum, critical group, nonabelian simple group.
@article{SEMR_2018_15_a15,
     author = {Yuri V. Lytkin},
     title = {On finite groups isospectral to the simple groups~$S_4(q)$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {570--584},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a15/}
}
TY  - JOUR
AU  - Yuri V. Lytkin
TI  - On finite groups isospectral to the simple groups~$S_4(q)$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 570
EP  - 584
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a15/
LA  - en
ID  - SEMR_2018_15_a15
ER  - 
%0 Journal Article
%A Yuri V. Lytkin
%T On finite groups isospectral to the simple groups~$S_4(q)$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 570-584
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a15/
%G en
%F SEMR_2018_15_a15
Yuri V. Lytkin. On finite groups isospectral to the simple groups~$S_4(q)$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 570-584. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a15/

[1] V.D. Mazurov, W.J. Shi, “A criterion of unrecognizability by spectrum for finite groups”, Algebra and Logic, 51:2 (2012), 160–162 | DOI | MR | Zbl

[2] I.B. Gorshkov, “Recognizability of alternating groups by spectrum”, Algebra and Logic, 52:1 (2013), 41–45 | DOI | MR | Zbl

[3] V.D. Mazurov, W.J. Shi, “A note to the characterization of sporadic simple groups”, Algebra Colloq, 5:3 (1998), 285–288 | MR | Zbl

[4] A.V. Vasil'ev, A.M. Staroletov, “Almost recognizability by spectrum of simple exceptional groups of Lie type”, Algebra Logic, 53:6 (2014), 433–449 | DOI | MR

[5] M.A. Grechkoseeva, A.V. Vasil'ev, “On the structure of finite groups isospectral to finite simple groups”, J. Group Theory, 18:5 (2015), 741–759 | DOI | MR | Zbl

[6] R. Brandl, W.J. Shi, “Finite groups whose element orders are consecutive integers”, J. Algebra, 143:2 (1991), 388–400 | DOI | MR | Zbl

[7] V.D. Mazurov, “Recognition of finite groups by a set of orders of their elements”, Algebra Logic, 37:6 (1998), 371–379 | DOI | MR | Zbl

[8] C.E. Praeger, W.J. Shi, “A characterization of some alternating and symmetric groups”, Comm. Algebra, 22:5 (1994), 1507–1530 | DOI | MR | Zbl

[9] V.D. Mazurov, “Unrecognizability by spectrum for a finite simple group $^3D_4(2)$”, Algebra Logic, 52:5 (2013), 400–403 | DOI | MR | Zbl

[10] V.D. Mazurov, “Recognition of finite simple groups $S_4(q)$ by their element orders”, Algebra Logic, 41:2 (2002), 93–110 | DOI | MR | Zbl

[11] A.V. Zavarnitsine, “Exceptional action of the simple groups $L_4(q)$ in the defining characteristic”, Siberian Electronic Mathematical Reports, 5 (2008), 68–74 | MR | Zbl

[12] A.V. Zavarnitsine, “Recognition of simple groups $U_3(q)$ by element orders”, Algebra Logic, 45:2 (2006), 106–116 | DOI | MR | Zbl

[13] V.D. Mazurov, M.C. Xu, H.P. Cao, “Recognition of the finite simple groups $L_3(2^m)$ and $U_3(2^m)$ from the orders of their elements”, Algebra Logic, 39:5 (2000), 324–334 | DOI | MR | Zbl

[14] M.A. Grechkoseeva, “On spectra of almost simple extensions of even-dimensional orthogonal groups”, Sib. Math. J., 2018 (to appear)

[15] M.A. Grechkoseeva, A.M. Staroletov, “Unrecognizability by spectrum of finite simple orthogonal groups of dimension nine”, Siberian Electronic Mathematical Reports, 11 (2014), 921–928 | MR | Zbl

[16] Y.V. Lytkin, “On groups critical with respect to a set of natural numbers”, Siberian Electronic Mathematical Reports, 10 (2013), 666–675 | MR | Zbl

[17] Y.V. Lytkin, “Groups critical with respect to the spectra of alternating and sporadic groups”, Sib. Math. J., 56:1 (2015), 101–106 | DOI | MR | Zbl

[18] Y.V. Lytkin, “On finite groups isospectral to $U_3(3)$”, Sib. Math. J., 58:4 (2017), 633–643 | DOI | MR | Zbl

[19] M.R. Aleeva, “On finite simple groups with the set of element orders as in a Frobenius group or a double Frobenius group”, Math. Notes, 73:3 (2003), 299–313 | DOI | MR | Zbl

[20] A.V. Zavarnitsine, “A solvable group isospectral to $S_4(3)$”, Sib. Math. J., 51:1 (2010), 20–24 | DOI | MR | Zbl

[21] J.S. Williams, “Prime graph components of finite groups”, J. Algebra, 69:2 (1981), 487–513 | DOI | MR | Zbl

[22] A.S. Kondrat'ev, V.D. Mazurov, “Recognition of alternating groups of prime degree from their element orders”, Sib. Math. J., 41:2 (2000), 294–302 | DOI | MR | Zbl

[23] V.D. Mazurov, “Characterizations of finite groups by sets of orders of their elements”, Algebra Logic, 36:1 (1997), 23–32 | DOI | MR | Zbl

[24] B. Srinivasan, “The characters of the finite symplectic group $Sp(4,q)$”, Trans. Amer. Math. Soc., 131 (1968), 488–525 | MR | Zbl

[25] A.A. Buturlakin, “Spectra of finite symplectic and orthogonal groups”, Siberian Adv. Math., 13:2 (2010), 176–210 | MR | Zbl

[26] A.V. Vasil'ev, M.A. Grechkoseeva, V.D. Mazurov, “On finite groups isospectral to simple symplectic and orthogonal groups”, Sib. Math. J., 50:6 (2009), 965–981 | DOI | MR | Zbl

[27] A.A. Buturlakin, “Spectra of finite linear and unitary groups”, Algebra Logic, 47:2 (2008), 91–99 | DOI | MR | Zbl

[28] J.H. Conway, et al., Atlas of Finite Groups, Clarendon Press, Oxford, 1985 | MR | Zbl

[29] ATLAS of Finite Group Representations – Version 3, http://brauer.maths.qmul.ac.uk/Atlas/v3/

[30] GAP: Groups, algorithms, and programming, http://www.gap-system.org

[31] M. Aschbacher, “Chevalley groups of type $G_2$ as the group of a trilinear form”, J. Algebra, 109 (1987), 193–259 | DOI | MR | Zbl

[32] A.V. Vasil'ev, A.M. Staroletov, “Recognizability of groups $G_2(q)$ by spectrum”, Algebra Logic, 52:1 (2013), 1–14 | DOI | MR | Zbl

[33] D.I. Deriziotis, G.O. Michler, “Character table and blocks of finite simple triality groups $^3D_4(q)$”, Trans. Amer. Math. Soc., 303 (1987), 39–70 | MR | Zbl

[34] M.A. Grechkoseeva, M.A. Zvezdina, “On spectra of automorphic extensions of finite simple groups $F_4(q)$ and $\text{}^3D_4(q)$”, J. Algebra Appl., 15:9 (2016), 1650168, 13 pp. | DOI | MR | Zbl

[35] R. Lawther, “The action of $F_4(q)$ on cosets of $B_3(q)$”, J. Algebra, 212 (1999), 79–118 | DOI | MR | Zbl

[36] A.A. Buturlakin, “Spectra of finite simple groups $E_6(q)$ and $^2E_6(q)$”, Algebra Logic, 52:3 (2013), 188–202 | DOI | MR | Zbl

[37] M.A. Grechkoseeva, “Element orders in covers of finite simple groups of Lie type”, J. Algebra Appl., 14:4 (2015), 1550056, 16 pp. | DOI | MR | Zbl

[38] M.A. Grechkoseeva, “On spectra of almost simple groups with symplectic or orthogonal socle”, Sib. Math. J., 57:4 (2016), 582–588 | DOI | MR | Zbl

[39] M.A. Zvezdina, “Spectra of automorphic extensions of finite simple symplectic and orthogonal groups over fields of characteristic 2”, Siberian Electronic Mathematical Reports, 11 (2014), 823–832 | MR | Zbl

[40] M.A. Grechkoseeva, “On orders of elements of finite almost simple groups with linear or unitary socle”, J. Group Theory, 6:6 (2017), 1191–1222 | MR | Zbl

[41] N.V. Maslova, “Finite simple groups that are not spectrum critical”, Proc. Steklov Inst. Math., 21:1 (2015), 211–215 | MR | Zbl

[42] J.N. Bray, D.F. Holt, C.M. Roney-Dougal, The maximal subgroups of the low-dimensional finite classical groups, Cambridge University Press, Cambridge, 2013 | MR | Zbl