Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a146, author = {I. A. Kaliev and G. S. Sabitova}, title = {The third boundary value problem for the system of equations of non-equilibrium sorption}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1857--1864}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a146/} }
TY - JOUR AU - I. A. Kaliev AU - G. S. Sabitova TI - The third boundary value problem for the system of equations of non-equilibrium sorption JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2018 SP - 1857 EP - 1864 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a146/ LA - en ID - SEMR_2018_15_a146 ER -
%0 Journal Article %A I. A. Kaliev %A G. S. Sabitova %T The third boundary value problem for the system of equations of non-equilibrium sorption %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2018 %P 1857-1864 %V 15 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a146/ %G en %F SEMR_2018_15_a146
I. A. Kaliev; G. S. Sabitova. The third boundary value problem for the system of equations of non-equilibrium sorption. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1857-1864. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a146/
[1] L. Lapidus, W.R. Amundson, “Mathematics of adsorption in beds. VI. The effect of longitudinal diffusion in ion exchange and chromatographic columns”, J. Phys. Chem., 56 (1952), 984–988 | DOI
[2] K.H. Coats, B.D. Smith, “Dead and pore volume and dispersion in porous media”, Soc. Petrol. Eng. J., 4:1 (1964), 73–84 | DOI
[3] Polubarinova-Cochina P. Y. (ed.), Development of research on the theory of filtration in the USSR, Nauka, M., 1969 | MR
[4] M. D. Noskov, The extraction of uranium by the method of borehole underground leaching, STI NIEU MIFI, Seversk, 2010, 83 pp.
[5] F. J. Leij, N. Toride, M. Th. van Genuchten, “Analytical solutions for non-equilibrium solute transport in three-dimensional porous media”, J. of Hydrology, 151 (1993), 193–228 | DOI
[6] I. A. Kaliev, G. S. Sabitova, “On a problem of non-equilibrium sorption”, J. of Applied and Industrial Mathematics, 6:1 (2003), 35–39 | MR | Zbl
[7] I. A. Kaliev, S. T. Mukhambetzhanov, G. S. Sabitova, “Numerical simulation of the process of non-equilibrium sorption”, Ufa Mathematical J., 8:2 (2016), 39–43 | DOI | MR
[8] I. A. Kaliev, S. T. Mukhambetzhanov, G. S. Sabitova, “Mathematical Modeling of Non-Equilibrium Sorption”, Far East J. of Mathematical Sciences (FJMS), 99:12 (2016), 1803–1810 | DOI | Zbl
[9] S. Zaremba, “Sur un probleme toujours possible comprenant, a titre de cas particuliers, le probleme de Dirichlet et celui de Neumann”, J. Math. Pures Appl., 6 (1927), 127–163 | Zbl
[10] G. Giraud, “Generalisation des problemes sur les operations du type elliptique”, Bull. Sc. Math., 56 (1932), 248–272 | Zbl
[11] O. A. Ladyzhenskaya, N. A. Solonnikov, N. N. Uraltseva, Linear and quasilinear equations of parabolic type, Nauka, M., 1967 | MR | Zbl