The third boundary value problem for the system of equations of non-equilibrium sorption
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1857-1864.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we investigate the system of equations modeling the process of non-equilibrium sorption. In particular, such systems are used in mathematical modeling of the production process of the useful component by the method of borehole underground leaching. The theorem of existence and uniqueness of the solution of the third boundary value problem in the multidimensional case in Hölder classes of functions is proved. The obtained maximum principle plays an important role in the proof of the theorem. The uniqueness of the solution is a consequence of this principle. The existence of a solution to the problem is shown by Schauder's fixed point theorem of a completely continuous operator. The description of the corresponding operator is given. Estimates are obtained to ensure the continuity of the constructed operator, and it is shown that the operator maps the original set of functions into itself at a small period of time. Then the estimates are given, allowing to continue the solution to any finite value of time.
Keywords: process of non-equilibrium sorption, third boundary value problem, global single-valued solvability.
@article{SEMR_2018_15_a146,
     author = {I. A. Kaliev and G. S. Sabitova},
     title = {The third boundary value problem for the system of equations of non-equilibrium sorption},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1857--1864},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a146/}
}
TY  - JOUR
AU  - I. A. Kaliev
AU  - G. S. Sabitova
TI  - The third boundary value problem for the system of equations of non-equilibrium sorption
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 1857
EP  - 1864
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a146/
LA  - en
ID  - SEMR_2018_15_a146
ER  - 
%0 Journal Article
%A I. A. Kaliev
%A G. S. Sabitova
%T The third boundary value problem for the system of equations of non-equilibrium sorption
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 1857-1864
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a146/
%G en
%F SEMR_2018_15_a146
I. A. Kaliev; G. S. Sabitova. The third boundary value problem for the system of equations of non-equilibrium sorption. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1857-1864. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a146/

[1] L. Lapidus, W.R. Amundson, “Mathematics of adsorption in beds. VI. The effect of longitudinal diffusion in ion exchange and chromatographic columns”, J. Phys. Chem., 56 (1952), 984–988 | DOI

[2] K.H. Coats, B.D. Smith, “Dead and pore volume and dispersion in porous media”, Soc. Petrol. Eng. J., 4:1 (1964), 73–84 | DOI

[3] Polubarinova-Cochina P. Y. (ed.), Development of research on the theory of filtration in the USSR, Nauka, M., 1969 | MR

[4] M. D. Noskov, The extraction of uranium by the method of borehole underground leaching, STI NIEU MIFI, Seversk, 2010, 83 pp.

[5] F. J. Leij, N. Toride, M. Th. van Genuchten, “Analytical solutions for non-equilibrium solute transport in three-dimensional porous media”, J. of Hydrology, 151 (1993), 193–228 | DOI

[6] I. A. Kaliev, G. S. Sabitova, “On a problem of non-equilibrium sorption”, J. of Applied and Industrial Mathematics, 6:1 (2003), 35–39 | MR | Zbl

[7] I. A. Kaliev, S. T. Mukhambetzhanov, G. S. Sabitova, “Numerical simulation of the process of non-equilibrium sorption”, Ufa Mathematical J., 8:2 (2016), 39–43 | DOI | MR

[8] I. A. Kaliev, S. T. Mukhambetzhanov, G. S. Sabitova, “Mathematical Modeling of Non-Equilibrium Sorption”, Far East J. of Mathematical Sciences (FJMS), 99:12 (2016), 1803–1810 | DOI | Zbl

[9] S. Zaremba, “Sur un probleme toujours possible comprenant, a titre de cas particuliers, le probleme de Dirichlet et celui de Neumann”, J. Math. Pures Appl., 6 (1927), 127–163 | Zbl

[10] G. Giraud, “Generalisation des problemes sur les operations du type elliptique”, Bull. Sc. Math., 56 (1932), 248–272 | Zbl

[11] O. A. Ladyzhenskaya, N. A. Solonnikov, N. N. Uraltseva, Linear and quasilinear equations of parabolic type, Nauka, M., 1967 | MR | Zbl