A generalized Riemann boundary value problem and integral
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1651-1662.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we an equivalen find a connection between the generalized Riemann boundary value problem (also known under the name of the Markushevich boundary problem or the ${\mathbb R}$-linear problem) and convolution equation of the first and second kind on a finite interval. In addition, as a consequence of the connection of the Markushevich boundary problem and equation in convolution of the second kind, the enough conditions for the correct solvability of the Markushevich boundary problem are obtained. This article is a continuation of the author's work «On the connection between the generalized Riemann boundary value problem and the truncated Wiener–Hopf equation», Siberian Electronic Mathematical Reports, 15 (2018), 412–421.
Keywords: ${\mathbb R}$-linear problem, problem of Markushevich, Riemann boundary value problems, factorization of matrix functions, factorization indices, stability
Mots-clés : unique, convolution equations.
@article{SEMR_2018_15_a144,
     author = {A. F. Voronin},
     title = {A generalized {Riemann} boundary value problem and integral},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1651--1662},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a144/}
}
TY  - JOUR
AU  - A. F. Voronin
TI  - A generalized Riemann boundary value problem and integral
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 1651
EP  - 1662
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a144/
LA  - ru
ID  - SEMR_2018_15_a144
ER  - 
%0 Journal Article
%A A. F. Voronin
%T A generalized Riemann boundary value problem and integral
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 1651-1662
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a144/
%G ru
%F SEMR_2018_15_a144
A. F. Voronin. A generalized Riemann boundary value problem and integral. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1651-1662. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a144/

[1] Voronin A. F., “On the connection between the generalized Riemann boundary value problem and the truncated Wiener-Hopf equation”, Siberian Electronic Mathematical Reports, 15 (2018), 412–421 (Russian) | MR

[2] Litvinchuk G. S., “Two theorems on the stability of the partial indices of Riemann's boundary value problem and their application”, Izv. vuzov. Matematika, 1967, no. 12, 47–57 | MR

[3] Voronin A. F., “Conditions for the stability and uniqueness of the solution of the Markushevich problem”, Sib. Elektron. Matem. Izv., 14 (2017), 511–517 (Russian) | MR

[4] Voronin A. F., “A complete generalization of the Wiener-Hopf method to convolution integral equations with integrable kernel on a finite interval”, Differential Equations, 40:9 (2004), 1259–-1267 | DOI | MR

[5] Voronin A. F., “Systems of convolution equations of the first and second kind on a finite interval and factorization of matrix-functions”, Sib. Math. J., 53:5 (2012), 781–-791 | DOI | MR

[6] Krein M. G., “Integral equations on the half-line with a kernel depending on the difference of the arguments”, Uspekhi mat. nauk, 13:5 (1958), 3–-120 (Russian) | MR

[7] I. C. Gohberg, I. A. Fel'dman, Convolution equations and projection methods for their solution, Nauka, M., 1971 (Russian) | MR