Mots-clés : unique, convolution equations.
@article{SEMR_2018_15_a144,
author = {A. F. Voronin},
title = {A generalized {Riemann} boundary value problem and integral},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {1651--1662},
year = {2018},
volume = {15},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a144/}
}
A. F. Voronin. A generalized Riemann boundary value problem and integral. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1651-1662. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a144/
[1] Voronin A. F., “On the connection between the generalized Riemann boundary value problem and the truncated Wiener-Hopf equation”, Siberian Electronic Mathematical Reports, 15 (2018), 412–421 (Russian) | MR
[2] Litvinchuk G. S., “Two theorems on the stability of the partial indices of Riemann's boundary value problem and their application”, Izv. vuzov. Matematika, 1967, no. 12, 47–57 | MR
[3] Voronin A. F., “Conditions for the stability and uniqueness of the solution of the Markushevich problem”, Sib. Elektron. Matem. Izv., 14 (2017), 511–517 (Russian) | MR
[4] Voronin A. F., “A complete generalization of the Wiener-Hopf method to convolution integral equations with integrable kernel on a finite interval”, Differential Equations, 40:9 (2004), 1259–-1267 | DOI | MR
[5] Voronin A. F., “Systems of convolution equations of the first and second kind on a finite interval and factorization of matrix-functions”, Sib. Math. J., 53:5 (2012), 781–-791 | DOI | MR
[6] Krein M. G., “Integral equations on the half-line with a kernel depending on the difference of the arguments”, Uspekhi mat. nauk, 13:5 (1958), 3–-120 (Russian) | MR
[7] I. C. Gohberg, I. A. Fel'dman, Convolution equations and projection methods for their solution, Nauka, M., 1971 (Russian) | MR