Funk--Minkowski transform and spherical convolution of Hilbert type in reconstructing functions on the sphere
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1630-1650

Voir la notice de l'article provenant de la source Math-Net.Ru

The Funk–Minkowski transform ${\mathcal F}$ associates a function $f$ on the sphere ${\mathbb S}^2$ with its mean values (integrals) along all great circles of the sphere. The presented analytical inversion formula reconstruct the unknown function $f$ completely if two Funk–Minkowski transforms, ${\mathcal F}f$ and ${\mathcal F} \nabla f$, are known. Another result of this article is related to the problem of Helmholtz–Hodge decomposition for tangent vector field on the sphere ${\mathbb S}^2$. We proposed solution for this problem which is used the Funk–Minkowski transform ${\mathcal F}$ and Hilbert type spherical convolution ${\mathcal S}$.
Keywords: Funk–Minkowski transform, Funk–-Radon transform, spherical convolution of Hilbert type, Fourier multiplier operator, inverse operator, scalar and vector spherical harmonics, tangential spherical vector field, Helmholtz–Hodge decomposition.
Mots-clés : surface gradient
@article{SEMR_2018_15_a143,
     author = {S. G. Kazantsev},
     title = {Funk--Minkowski transform and spherical convolution of {Hilbert} type   in reconstructing functions on the sphere},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1630--1650},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a143/}
}
TY  - JOUR
AU  - S. G. Kazantsev
TI  - Funk--Minkowski transform and spherical convolution of Hilbert type   in reconstructing functions on the sphere
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 1630
EP  - 1650
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a143/
LA  - en
ID  - SEMR_2018_15_a143
ER  - 
%0 Journal Article
%A S. G. Kazantsev
%T Funk--Minkowski transform and spherical convolution of Hilbert type   in reconstructing functions on the sphere
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 1630-1650
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a143/
%G en
%F SEMR_2018_15_a143
S. G. Kazantsev. Funk--Minkowski transform and spherical convolution of Hilbert type   in reconstructing functions on the sphere. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1630-1650. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a143/