Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a143, author = {S. G. Kazantsev}, title = {Funk--Minkowski transform and spherical convolution of {Hilbert} type in reconstructing functions on the sphere}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1630--1650}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a143/} }
TY - JOUR AU - S. G. Kazantsev TI - Funk--Minkowski transform and spherical convolution of Hilbert type in reconstructing functions on the sphere JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2018 SP - 1630 EP - 1650 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a143/ LA - en ID - SEMR_2018_15_a143 ER -
%0 Journal Article %A S. G. Kazantsev %T Funk--Minkowski transform and spherical convolution of Hilbert type in reconstructing functions on the sphere %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2018 %P 1630-1650 %V 15 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a143/ %G en %F SEMR_2018_15_a143
S. G. Kazantsev. Funk--Minkowski transform and spherical convolution of Hilbert type in reconstructing functions on the sphere. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1630-1650. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a143/
[1] M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing, Dover, New York, 1972 | MR | Zbl
[2] A. Abouelaz, R. Daher, “Sur la transformation de Radon de la sphere ${\mathbb S}^d$”, Bull. Soc. math. France, 121:3 (1993), 353–382 | DOI | MR | Zbl
[3] K. Atkinson, W. Han, Spherical Harmonics and Approximations on the Unit Sphere: An Introduction, Lecture Notes in Mathematics, 2044, Springer, Heidelberg, 2012 | DOI | MR | Zbl
[4] M. Cantor, “Elliptic operators and the decomposition of tensor fields”, Bulletin (new series) of the American mathematical society, 5:3 (1981), 235–262 | DOI | MR | Zbl
[5] F. Dai, Y. Xu, Approximation Theory and Harmonic Analysis on Spheres and Balls, Springer Monographs in Mathematics, Springer, New York, 2013 | DOI | MR | Zbl
[6] R. Daher, “Un theoreme de support pour une transformation de Radon sur la sphere ${\mathbb S}^d$”, C. R. Acad. Sci. Paris, 332:9 (2001), 795–798 | DOI | MR | Zbl
[7] S. Dann, On the Funk–Minkowski transform, 2010, arXiv: 1003.5565
[8] E. Yu. Derevtsov, S. G. Kazantsev, Th. Schuster, “Polynomial bases for subspaces of vector fields in the unit ball. Method of ridge functions”, J. Inv. Ill-Posed Problems, 15:1 (2007), 19–55 | DOI | MR | Zbl
[9] P. Funk, “Über Flächen mit lauter geschlossenen geodätischen Linien”, Math. Ann., 74:2 (1913), 278–300 | DOI | MR | Zbl
[10] P. Funk, “Beitrage zur Theorie der Kugelfunktionen”, Math. Ann., 77 (1915), 136–152 | DOI | MR
[11] P. Funk, “Uber eine geometrische Anwendung der Abelschen Integralgleichung”, Math. Ann., 77 (1916), 129–135 | DOI | MR
[12] W. Freeden, M. Schreiner, Spherical functions of mathematical geosciences. A scalar, vectorial, and tensorial setup, Springer, Berlin, 2009 | Zbl
[13] W. Freeden, M. Gutting, Special Functions of Mathematical (Geo-)Physics, Springer, Basel, 2013 | MR | Zbl
[14] I. M. Gelfand, G. E. Shilov, Generalized Functions. 1. Properties and Operations, Academic Press, New York–London, 1964 | MR
[15] S. Gindikin, J. Reeds, L. Shepp, “Spherical tomography and spherical integral geometry”, Tomography, Impedance Imaging, and Integral Geometry (South Hadley, Massachusetts, 1994), Lectures in Appl. Math., 30, eds. E. T. Quinto, M. Cheney, P. Kuchment, American Mathematical Society, 83–92 | MR | Zbl
[16] P. Goodey, W. Weil, “Centrally symmetric convex bodies and the spherical Radon transform”, Journal of Differential Geometry, 35 (1992), 675–688 | DOI | MR | Zbl
[17] S. Helgason, The Radon transform, Progress in mathematics, 5, Birkhuser Boston Inc., Boston, MA, 1999 | DOI | MR | Zbl
[18] S. Helgason, Integral Geometry and Radon Transforms, Springer, 2011 | MR | Zbl
[19] R. Hielscher, M. Quellmalz, “Reconstructing a function on the sphere from its means along vertical slices”, Inverse Probl. Imaging, 10:3 (2016), 711—739 | DOI | MR | Zbl
[20] Y. Hristova, S. Moon, D. Steinhauer, “A Radon-type transform arising in Photoacoustic Tomography with circular detectors: spherical geometry”, Inverse Problems in Science and Engineering, 24:6 (2016), 974–989 | DOI | MR | Zbl
[21] S. G. Kazantsev, “Singular value decomposition for the cone-beam transform in the ball”, J. Inverse Ill-Posed Probl., 23:2 (2015), 173–185 | DOI | MR | Zbl
[22] A. K. Louis, M. Riplinger, M. Spiess, E. Spodarev, “Inversion algorithms for the spherical Radon and cosine transform”, Inverse Problems, 27 (2011), 035015 | DOI | MR | Zbl
[23] A. K. Louis, “Exact cone beam reconstruction formulae for functions and their gradients for spherical and flat detectors”, Inverse Problems, 32:11 (2016), 115005 | DOI | MR | Zbl
[24] V. Michel, Lectures on Constructive Approximation: Fourier, Spline, and Wavelet Methods on the Real Line, the Sphere, and the Ball, Birkhauser, New York, 2013 | MR | Zbl
[25] H. Minkowski, “About bodies of constant width”, Mathematics Sbornik, 25 (1904), 505–508
[26] F. Morse, H. Feshbach, Methods of theoretical physics, v. 2, McGraw-Hill, 1953 | MR | Zbl
[27] C. Muller, Spherical Harmonics, Lecture Notes in Mathematics, 17, Springer, Berlin, 1966 | DOI | MR | Zbl
[28] F. Natterer, F. Wübeling, Mathematical methods in image reconstruction, Monographs on Mathematical Modeling and Computation, 5, SIAM, Philadelphia, PA, 2001 | MR | Zbl
[29] J.-C. Nedelec, Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems, Applied Mathematical Sciences, 144, Springer, New York, 2001 | DOI | MR | Zbl
[30] V. Palamodov, “Reconstruction from cone integral transforms”, Inverse Problems, 33:10 (2017), 104001 | DOI | MR | Zbl
[31] V. P. Palamodov, Reconstruction from Integral Data, Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, 2016 | DOI | MR | Zbl
[32] M. Quellmalz, R. Hielscher, A. K. Louis, The cone-beam transform and spherical convolution operators, 2018, arXiv: 1803.10515 | MR
[33] M. Quellmalz, “A generalization of the Funk–Radon transform”, Inverse Problems, 33:3 (2017), 035016 | DOI | MR | Zbl
[34] B. Rubin, “Fractional calculus and wavelet transforms in integral geometry”, Fract. Calc. Appl. Anal., 1:2 (1998), 193–219 | MR | Zbl
[35] B. Rubin, “Spherical Radon transforms and related wavelet transforms”, Appl. Comput. Harmon. Anal., 5 (1998), 202–215 | DOI | MR | Zbl
[36] B. Rubin, “Inversion of fractional integrals related to the spherical Radon transform”, Journal of Functional Analysis, 157:2 (1998), 470–487 | DOI | MR | Zbl
[37] B. Rubin, “Generalized Minkowski–Funk transforms and small denominators on the sphere”, Fract. Calc. Appl. Anal., 3:2 (2000), 177–204 | MR
[38] B. Rubin, “Inversion formulas for the spherical Radon transform and the generalized cosine transform”, Adv. in Appl. Math., 29 (2002), 471–-497 | DOI | MR | Zbl
[39] B. Rubin, “Notes on Radon transforms in integral geometry”, Fract. Calc. Appl. Anal., 6 (2003), 25–72 | MR | Zbl
[40] B. Rubin, “Intersection bodies and generalized cosine transforms”, Advances in Mathematics, 218:3 (2008), 696–727 | DOI | MR | Zbl
[41] B. Rubin, “The $\lambda $-cosine transforms with odd kernel and the hemispherical transform”, Fract. Calc. Appl. Anal., 17:3 (2014), 765-–806 | DOI | MR | Zbl
[42] B. Rubin, Introduction to Radon Transforms: With Elements of Fractional Calculus and Harmonic Analysis, Encyclopedia of Mathematics and its Applications, Cambridge University Press, New York, 2015 | MR | Zbl
[43] Y. Salman, “An inversion formula for the spherical transform in ${\mathbb S}^2$ for a special family of circles of integration”, Anal. Math. Phys., 6:1 (2016), 43–58 | DOI | MR | Zbl
[44] S. G. Samko, “Generalized Riesz potentials and hypersingular integrals with homogeneous characteristics; their symbols and inversion”, Trudy Mat. Inst. Steklov., 156, 1980, 157–222 | MR | Zbl
[45] S. G. Samko, Hypersingular integrals and their applications, Analytic Methods and Special Functions, 5, Taylor $\$ Francis, 2002 | MR | Zbl
[46] R. Schneider, “Functions on a sphere with vanishing integrals over certain subspheres”, J. Math. Anal. Appl., 26 (1969), 381–384 | DOI | MR | Zbl
[47] V. I. Semyanistyi, “Homogeneous functions and some problems of integral geometry in the spaces of constant curvature”, Dokl. Akad. Nauk SSSR, 136:2 (1961), 288–291 | MR
[48] V. I. Semyanistyi, “Some integral transformations and integral geometry in an elliptic space”, Tr. Semin. Vektorn. Tenzorn. Anal., 12, 1963, 397–441 (in Russian) | MR
[49] V. A. Sharafutdinov, Integral geometry of tensor fields, VSP, Utrecht, 1994 | MR
[50] V. N. Stepanov, “The method of spherical harmonics for integral transforms on a sphere”, Mathematical Structures and Modeling, 2:42 (2017), 36–48 | Zbl
[51] R. S. Strichartz, “$L_p$ estimates for Radon transforms in Euclidean and non-Euclidean spaces”, Duke Math. J., 48:4 (1981), 699–727 | DOI | MR | Zbl
[52] D. A. Varshalovich, A. N. Moskalev, V. K. Khersonskii, Quantum Theory of Angular Momentum. Irreducible Tensors, Spherical Harmonics, Vector Coupling Coefficients, $3nj$ Symbols, World Scientific Publishing, Teaneck, 1988 | MR
[53] K. Wang, L. Li, Harmonic analysis and approximation on the unit sphere, Science Press, Beijing, 2006
[54] C. E. Yarman, B. Yazici, “Inversion of the circular averages transform using the Funk transform”, Inverse Problems, 27:6 (2011), 065001 | DOI | MR | Zbl
[55] G. Zangerl, O. Scherzer, “Exact reconstruction in photoacoustic tomography with circular integrating detectors II: Spherical geometry”, Math. Methods Appl. Sci., 33:15 (2010), 1771–1782 | DOI | MR | Zbl