Distortion theorem for complex polynomials
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1410-1415

Voir la notice de l'article provenant de la source Math-Net.Ru

For any complex polynomial $P$ of degree $n\ge 2$ and any complex number $z$, we consider a sharp inequality involving of the absolute values of $P(z),\; P'(z)$, leading coefficient of $P$ and an upper bound of the moduli of the critical values of $P$. All cases of an equality in this inequality are established.
Keywords: distortion theorems, complex polynomials, inequalities, critical values.
@article{SEMR_2018_15_a139,
     author = {V. N. Dubinin},
     title = {Distortion theorem for complex polynomials},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1410--1415},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a139/}
}
TY  - JOUR
AU  - V. N. Dubinin
TI  - Distortion theorem for complex polynomials
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 1410
EP  - 1415
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a139/
LA  - en
ID  - SEMR_2018_15_a139
ER  - 
%0 Journal Article
%A V. N. Dubinin
%T Distortion theorem for complex polynomials
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 1410-1415
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a139/
%G en
%F SEMR_2018_15_a139
V. N. Dubinin. Distortion theorem for complex polynomials. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1410-1415. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a139/