Distortion theorem for complex polynomials
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1410-1415.

Voir la notice de l'article provenant de la source Math-Net.Ru

For any complex polynomial $P$ of degree $n\ge 2$ and any complex number $z$, we consider a sharp inequality involving of the absolute values of $P(z),\; P'(z)$, leading coefficient of $P$ and an upper bound of the moduli of the critical values of $P$. All cases of an equality in this inequality are established.
Keywords: distortion theorems, complex polynomials, inequalities, critical values.
@article{SEMR_2018_15_a139,
     author = {V. N. Dubinin},
     title = {Distortion theorem for complex polynomials},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1410--1415},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a139/}
}
TY  - JOUR
AU  - V. N. Dubinin
TI  - Distortion theorem for complex polynomials
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 1410
EP  - 1415
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a139/
LA  - en
ID  - SEMR_2018_15_a139
ER  - 
%0 Journal Article
%A V. N. Dubinin
%T Distortion theorem for complex polynomials
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 1410-1415
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a139/
%G en
%F SEMR_2018_15_a139
V. N. Dubinin. Distortion theorem for complex polynomials. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1410-1415. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a139/

[1] W. K. Hayman, Research Problems in Function Theory, Athlone Press, London, 1967 | MR

[2] P. Erdős, “Some of my favorite unsolved problems”, A Tribute to Paul Erdős, Cambridge Univ. Press, Cambridge, 1990, 467–478 | MR

[3] A. Eremenko, L. Lempert, “An extremal problem for polynomials”, Proc. Amer. Math. Soc., 122:1 (1994), 191–193 | DOI | MR

[4] A. Eremenko, “A Markov-type inequality for arbitrary plane continua”, Proc. Amer. Math. Soc., 135:5 (2007), 1505–1510 | DOI | MR

[5] V.N. Dubinin, “Four-point distortion theorem for complex polynomials”, Complex Var. Elliptic Eq., 59:1 (2014), 59–66 | DOI | MR

[6] V. N. Dubinin, “On one extremal problem for complex polynomials with constraints on critical values”, Siberian Math. J., 55:1 (2014), 63–71 | DOI | MR

[7] V. N. Dubinin, “Circular symmetrization of condensers on Riemann surfaces”, Sb. Math., 206:1–2 (2015), 61–86 | DOI | MR

[8] V. N. Dubinin, “A Markov-type inequality and a lower bound for the moduli of critical values of polynomials”, Dokl. Math., 88:1 (2013), 449–450 | DOI | MR

[9] V. N. Dubinin, “An Extremal Problem for the Derivative of a Rational Function”, Math. Notes, 100:5 (2016), 714–719 | DOI | MR

[10] V. N. Dubinin, Condenser capacities and symmetrization in geometric function theory, Birkhauser/Springer, Basel, 2014 | MR