Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a139, author = {V. N. Dubinin}, title = {Distortion theorem for complex polynomials}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1410--1415}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a139/} }
V. N. Dubinin. Distortion theorem for complex polynomials. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1410-1415. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a139/
[1] W. K. Hayman, Research Problems in Function Theory, Athlone Press, London, 1967 | MR
[2] P. Erdős, “Some of my favorite unsolved problems”, A Tribute to Paul Erdős, Cambridge Univ. Press, Cambridge, 1990, 467–478 | MR
[3] A. Eremenko, L. Lempert, “An extremal problem for polynomials”, Proc. Amer. Math. Soc., 122:1 (1994), 191–193 | DOI | MR
[4] A. Eremenko, “A Markov-type inequality for arbitrary plane continua”, Proc. Amer. Math. Soc., 135:5 (2007), 1505–1510 | DOI | MR
[5] V.N. Dubinin, “Four-point distortion theorem for complex polynomials”, Complex Var. Elliptic Eq., 59:1 (2014), 59–66 | DOI | MR
[6] V. N. Dubinin, “On one extremal problem for complex polynomials with constraints on critical values”, Siberian Math. J., 55:1 (2014), 63–71 | DOI | MR
[7] V. N. Dubinin, “Circular symmetrization of condensers on Riemann surfaces”, Sb. Math., 206:1–2 (2015), 61–86 | DOI | MR
[8] V. N. Dubinin, “A Markov-type inequality and a lower bound for the moduli of critical values of polynomials”, Dokl. Math., 88:1 (2013), 449–450 | DOI | MR
[9] V. N. Dubinin, “An Extremal Problem for the Derivative of a Rational Function”, Math. Notes, 100:5 (2016), 714–719 | DOI | MR
[10] V. N. Dubinin, Condenser capacities and symmetrization in geometric function theory, Birkhauser/Springer, Basel, 2014 | MR