Uniformity of $cc$-balls on some class of 2-step Carnot groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1182-1197

Voir la notice de l'article provenant de la source Math-Net.Ru

For some class of 2-step Carnot groups $\Bbb H_{\alpha_1,\dots,\alpha_n}^1$ that includes Heizenberg groups we proved that Carnot-Carathéodory balls ($cc$-balls) of these groups are uniform domains. We studied the geometry of the set of points of $\Bbb H_{\alpha_1,\dots,\alpha_n}^1$ joined with identity element of $\Bbb H_{\alpha_1,\dots,\alpha_n}^1$ more than one Carnot-Carathéodory $cc$- shortest path.
Keywords: Carnot–Carathéodory shortest path, cc-ball, extremal, Heisenberg groups.
Mots-clés : uniform domain
@article{SEMR_2018_15_a137,
     author = {A. V. Greshnov},
     title = {Uniformity of $cc$-balls on some class of 2-step {Carnot} groups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1182--1197},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a137/}
}
TY  - JOUR
AU  - A. V. Greshnov
TI  - Uniformity of $cc$-balls on some class of 2-step Carnot groups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 1182
EP  - 1197
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a137/
LA  - ru
ID  - SEMR_2018_15_a137
ER  - 
%0 Journal Article
%A A. V. Greshnov
%T Uniformity of $cc$-balls on some class of 2-step Carnot groups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 1182-1197
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a137/
%G ru
%F SEMR_2018_15_a137
A. V. Greshnov. Uniformity of $cc$-balls on some class of 2-step Carnot groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1182-1197. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a137/