Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a137, author = {A. V. Greshnov}, title = {Uniformity of $cc$-balls on some class of 2-step {Carnot} groups}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1182--1197}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a137/} }
A. V. Greshnov. Uniformity of $cc$-balls on some class of 2-step Carnot groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1182-1197. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a137/
[1] Kolmogorov A. N., Fomin S. V., Elements of the theory of functions and functional analysis, Izdat. “Nauka”, M., 1968 | MR
[2] Gromov M., “Carnot-Carathéodory spaces seen from within”, Sub-Riemannian geometry, Prog. Math., 144, Birkhäuser, Basel, 1996, 79–323 | MR | Zbl
[3] Jones P., “Extension theorems for BMO”, Indiana Univ. Math., 29:1 (1980), 41–66 | DOI | MR | Zbl
[4] Jones P., “Quasiconformal mappinga and extendability of functions in Sobolev spaces”, Acta Math., 147 (1981) | DOI | MR | Zbl
[5] Vodop'yanov S. K., Greshnov A. V., “On the continuation of functions of bounded mean oscillation on spaces of homogeneous type with intrinsic metric”, Siberian Math. J., 36:5 (1995), 873-–901 | DOI | MR | Zbl
[6] Greshnov A. V., “On uniform and NTA-domains on Carnot groups”, Siberian Math. J., 42:5 (2001), 851–864 | DOI | MR | Zbl
[7] Capogna L., Garofalo N., “Boundary behavior of non-negative solutions of subelliptic equations in NTA-domains for Carnot-Carathéodory metrics”, J. Fourier Anal. Appl., 4:4–5 (1998), 403–432 | DOI | MR | Zbl
[8] Greshnov A. V., “The geometry of $cc$-balls and constants in the ball-box theorem on Heisenberg group algebras”, Siberian Math. J., 55:5 (2014), 849–865 | DOI | MR | Zbl
[9] Rothchild L. P., Stein E. S., “Hypoelliptic differential operators and nilpotent groups”, Acta Math., 137:3–4 (1976), 247–320 | DOI | MR
[10] Bonfiglioli A., Lanconelli E., Uguzzoni F., Stratified Lie groups and potential theory for their sub-Laplacian, Springer Monographs in Mathematics, Springer, Berlin, 2007 | MR
[11] Pansu P., “Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un”, Ann. of Math., (2), 129:1 (1989), 1–60 | DOI | MR | Zbl
[12] Postnikov M. M., Lie groups and algebras, Lectures in geometry, Semester V, Nauka, M., 1982 | MR | Zbl
[13] Agrachev A., Barilari D., Boscain U., “On the Hausdorff volume in sub-Riemannian geometry”, Calc. Var. Partial Differential Equations, 43:3–4 (2012), 355–388 | DOI | MR | Zbl
[14] M. de Guzmán, Differentiation of integrals in $R^n$, Lecture Notes in Mathematics, 481, Springer-Verlag, Berlin–New York, 1975 | DOI | MR
[15] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mishchenko E. F., The mathematical theory of optimal procsses, Interscience Publishers John Wiley Sons, Inc., New-York–London, 1962 | MR
[16] Elsgolts L., Differential equations and the calculus of variations, Mir Publishers, M., 1970 | MR
[17] Berestovskii V. N., “Geodesics of nonholonomic left-invariant inner metrics on the Heisenberg group and isoperimetrics of the Minkowski plane”, Siberian Math. J., 35:1 (1994), 1–8 | DOI | MR