Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a135, author = {V. L. Vaskevich}, title = {The error estimates of minimal and almost minimal cubature formulas on classes of periodic functions}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1080--1090}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a135/} }
TY - JOUR AU - V. L. Vaskevich TI - The error estimates of minimal and almost minimal cubature formulas on classes of periodic functions JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2018 SP - 1080 EP - 1090 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a135/ LA - ru ID - SEMR_2018_15_a135 ER -
%0 Journal Article %A V. L. Vaskevich %T The error estimates of minimal and almost minimal cubature formulas on classes of periodic functions %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2018 %P 1080-1090 %V 15 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a135/ %G ru %F SEMR_2018_15_a135
V. L. Vaskevich. The error estimates of minimal and almost minimal cubature formulas on classes of periodic functions. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1080-1090. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a135/
[1] Kluwer Academic Publishers Group, Dordrecht, 1997 | MR | Zbl
[2] Comput. Math. Math. Phys., 44 (2004), 740–749 | MR | Zbl
[3] Comput. Math. Math. Phys., 48:2 (2008), 201–208 | DOI | MR | MR | Zbl
[4] N. N. Osipov, Cubature formulas for periodic functions, Dissertation, Krasnoyarsk State Technical University, Krasnoyarsk, 2005
[5] S. G. Krein, Yu. I. Petunin, E. M. Semenov, Interpolation of linear operators, Nauka, M., 1978 | MR
[6] Sib. Math. J., 49:5 (2008), 806–813 | DOI | MR | Zbl
[7] Sib. Math. J., 55 (2014), 792–806 | DOI | MR | Zbl
[8] Cubature Formulas and Modern Analysis. An Introduction, Gordon and Breach Science Publishers, Montreux, 1992 | MR | MR | Zbl
[9] V. L. Vaskevich, “Convergence of cubature formulas of high trigonometric precision in multidimensional periodic Sobolev spaces”, Siberian Adv. Math., 25:4 (2015), 297–304 | DOI | MR | Zbl
[10] A. Erdélyi (ed.), Higher Transcendental Functions, v. III, Bateman Manuscript Project, California Inst. Tech., 1981
[11] V. L. Vaskevich, “A Majorant for the Multiplicities of Eigenvalues of the Laplace Operator with Periodic Conditions”, Siberian Adv. Math., 28:1 (2018), 74–77 | DOI | MR