The error estimates of minimal and almost minimal cubature formulas on classes of periodic functions
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1080-1090.

Voir la notice de l'article provenant de la source Math-Net.Ru

A power-law order of convergence to zero of a sequence of norms of error functionals for minimal and almost minimal cubature formulas is established. Functionals act on multidimensional periodic Sobolev spaces, including on spaces with fractional smoothness.
Keywords: cubature formulas, minimal and almost minimal cubature formulas, the convergence order, error functionals, extremal functions, embedding constants.
@article{SEMR_2018_15_a135,
     author = {V. L. Vaskevich},
     title = {The error estimates of minimal and almost minimal cubature formulas on classes of periodic functions},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1080--1090},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a135/}
}
TY  - JOUR
AU  - V. L. Vaskevich
TI  - The error estimates of minimal and almost minimal cubature formulas on classes of periodic functions
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 1080
EP  - 1090
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a135/
LA  - ru
ID  - SEMR_2018_15_a135
ER  - 
%0 Journal Article
%A V. L. Vaskevich
%T The error estimates of minimal and almost minimal cubature formulas on classes of periodic functions
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 1080-1090
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a135/
%G ru
%F SEMR_2018_15_a135
V. L. Vaskevich. The error estimates of minimal and almost minimal cubature formulas on classes of periodic functions. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1080-1090. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a135/

[1] Kluwer Academic Publishers Group, Dordrecht, 1997 | MR | Zbl

[2] Comput. Math. Math. Phys., 44 (2004), 740–749 | MR | Zbl

[3] Comput. Math. Math. Phys., 48:2 (2008), 201–208 | DOI | MR | MR | Zbl

[4] N. N. Osipov, Cubature formulas for periodic functions, Dissertation, Krasnoyarsk State Technical University, Krasnoyarsk, 2005

[5] S. G. Krein, Yu. I. Petunin, E. M. Semenov, Interpolation of linear operators, Nauka, M., 1978 | MR

[6] Sib. Math. J., 49:5 (2008), 806–813 | DOI | MR | Zbl

[7] Sib. Math. J., 55 (2014), 792–806 | DOI | MR | Zbl

[8] Cubature Formulas and Modern Analysis. An Introduction, Gordon and Breach Science Publishers, Montreux, 1992 | MR | MR | Zbl

[9] V. L. Vaskevich, “Convergence of cubature formulas of high trigonometric precision in multidimensional periodic Sobolev spaces”, Siberian Adv. Math., 25:4 (2015), 297–304 | DOI | MR | Zbl

[10] A. Erdélyi (ed.), Higher Transcendental Functions, v. III, Bateman Manuscript Project, California Inst. Tech., 1981

[11] V. L. Vaskevich, “A Majorant for the Multiplicities of Eigenvalues of the Laplace Operator with Periodic Conditions”, Siberian Adv. Math., 28:1 (2018), 74–77 | DOI | MR