Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a134, author = {A. S. Romanov}, title = {On the equivalence of domains in the theory of}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1024--1039}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a134/} }
A. S. Romanov. On the equivalence of domains in the theory of. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1024-1039. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a134/
[1] S. K. Vodop'yanov, V. M. Gol'dshtein, “Criteria for the removability of sets in spaces of $L_p^1$ quasiconformal and quasi-isometric mappings”, Siberian Math. J., 18:1 (1977), 35–50 | DOI | MR | Zbl
[2] S.K. Vodop'yanov, V.M. Gol'dshtein, Yu.G. Reshetnyak, “On geometric properties of functions with generalized first derivatives”, Russian Mathematical Surveys, 34:1 (1979), 19–74 | DOI | MR | Zbl
[3] V.M. Gol’dshtein, Yu.G. Reshetnyak, Quasiconformal mappings and Sobolev spaces, Kluwer Academic Publishers Group, Dordrecht, 1990 | MR | Zbl
[4] O. Kovacik, J. Rakosnik, “On spaces $L^{p(x)}$ and $W^{k,p(x)}$”, Czechoslovak Math. J., 41:4 (1991), 592–618 | MR | Zbl
[5] D.E. Edmunds, J. Rakosnik, “Sobolev embeddings with variable exponent”, Studia Math., 143:3 (2000), 267–293 | DOI | MR | Zbl
[6] P. Harjulehto, P. Hästö, M. Pere, “Variable Exponent Lebesgue Spaces on Metric Spaces: The Hardy-Littlewood Maximal Operator”, Real Analysis Exchange, 30:1 (2004/2005), 87–104 | DOI | MR
[7] L. Diening, P. Harjulehto, P. Hästö, M. Ruzicka, Lebesgue and Sobolev Spaces with Variable Exponents, Springer-Verlag, 2011 | MR | Zbl
[8] A.S. Romanov, “Sobolev-type functions with variable integrability exponent on metric measure spaces”, Siberian Math. J.,, 55:1 (2014), 142—-155 | DOI | MR | Zbl
[9] L.V. Kantorovich, G.P. Akilov, Funkcional'nyj analiz, Nauka, M., 1977 | MR
[10] V.G. Maz'ya, Prostranstva S. L. Soboleva, Izd.-vo Leningr. un-ta, Leningrad, 1985 | MR | Zbl
[11] A.S. Romanov, “The composition operators in Sobolev spaces with variable exponent of summability”, Siberian Electronic Mathematical Reports, 14 (2017), 794–-806 | MR | Zbl
[12] P. Harjulehto, P. Hästö, M. Koskenoja, S. Varonen, “Sobolev capacity on the space $W^{1,p(\cdot)}(R^n)$”, Journal of Func. Spaces and Appl., 1:1 (2003), 17–33 | DOI | MR | Zbl