Approximate calculation of the defect of a Lipschitz cylindrical condenser
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 906-926

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the notion of defect of a Lipschitz cylindrical condenser. It is the difference between the capacity of the condenser and its Ahlfors integral. We calculate the defect approximately for condensers over arbitrary open sets. For a condenser over an inner uniform domain the quantity obtained is comparable to the sum of the squares of the seminorms of the plates in a weighted homogeneous Slobodetskii space. This uses the characterization of inner uniform domains by the following property: every inner metric ball is a centered John domain.
Keywords: Ahlfors integral, capacity, defect, Lipschitz domain.
Mots-clés : condenser, inner uniform domain
@article{SEMR_2018_15_a132,
     author = {A. I. Parfenov},
     title = {Approximate calculation of the defect of a {Lipschitz} cylindrical condenser},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {906--926},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a132/}
}
TY  - JOUR
AU  - A. I. Parfenov
TI  - Approximate calculation of the defect of a Lipschitz cylindrical condenser
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 906
EP  - 926
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a132/
LA  - ru
ID  - SEMR_2018_15_a132
ER  - 
%0 Journal Article
%A A. I. Parfenov
%T Approximate calculation of the defect of a Lipschitz cylindrical condenser
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 906-926
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a132/
%G ru
%F SEMR_2018_15_a132
A. I. Parfenov. Approximate calculation of the defect of a Lipschitz cylindrical condenser. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 906-926. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a132/