Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a132, author = {A. I. Parfenov}, title = {Approximate calculation of the defect of a {Lipschitz} cylindrical condenser}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {906--926}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a132/} }
TY - JOUR AU - A. I. Parfenov TI - Approximate calculation of the defect of a Lipschitz cylindrical condenser JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2018 SP - 906 EP - 926 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a132/ LA - ru ID - SEMR_2018_15_a132 ER -
A. I. Parfenov. Approximate calculation of the defect of a Lipschitz cylindrical condenser. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 906-926. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a132/
[1] V. Anandam, Harmonic Functions and Potentials on Finite or Infinite Networks, Springer, Heidelberg, 2011 | MR | Zbl
[2] G.D. Anderson, “Derivatives of the conformal capacity of extremal rings”, Ann. Acad. Sci. Fenn. Ser. A. I. Math., 10 (1985), 29–46 | DOI | MR | Zbl
[3] N. Arcozzi, “Capacity of shrinking condensers in the plane”, J. Funct. Anal., 263 (2012), 3102–3116 | DOI | MR | Zbl
[4] N. Arcozzi, R. Rochberg, E.T. Sawyer, B.D. Wick, “Potential theory on trees, graphs and Ahlfors-regular metric spaces”, Potential Anal., 41 (2014), 317–366 | DOI | MR | Zbl
[5] Z. Balogh, A. Volberg, “Geometric localization, uniformly John property and separated semihyperbolic dynamics”, Ark. Mat., 34 (1996), 21–49 | DOI | MR | Zbl
[6] Yu.A. Brudnyi, S.G. Krein, E.M. Semenov, “Interpolation of linear operators”, Itogi Nauki Tekh., Ser. Mat. Anal., 24, 1986, 3–163 (Russian) | MR
[7] A. Colesanti, K. Nyström, P. Salani, J. Xiao, D. Yang, G. Zhang, “The Hadamard variational formula and the Minkowski problem for $p$-capacity”, Adv. Math., 285 (2015), 1511–1588 | DOI | MR | Zbl
[8] A.R. Elcrat, K.G. Miller, “Variational formulas on Lipschitz domains”, Trans. Amer. Math. Soc., 347 (1995), 2669–2678 | DOI | MR | Zbl
[9] I. Fragalà, F. Gazzola, M. Pierre, “On an isoperimetric inequality for capacity conjectured by Pólya and Szegö”, J. Differ. Equations, 250 (2011), 1500–1520 | DOI | MR | Zbl
[10] P. Gyrya, L. Saloff-Coste, Neumann and Dirichlet Heat Kernels in Inner Uniform Domains, Astérisque, 336, Société Mathématique de France, Paris, 2011 | MR | Zbl
[11] P. Hajłasz, “Sobolev inequalities, truncation method, and John domains”, Papers on analysis, 83, eds. J. Heinonen et al., Univ. Jyväskylä, Jyväskylä, 2001, 109–126 | MR | Zbl
[12] F. John, “Rotation and strain”, Comm. Pure Appl. Math., 14 (1961), 391–413 | DOI | MR | Zbl
[13] R. Laugesen, “Extremal problems involving logarithmic and Green capacity”, Duke Math. J., 70 (1993), 445–480 | DOI | MR | Zbl
[14] R.D. Lyons, Y. Peres, Probability on Trees and Networks, Cambridge University Press, New York, 2016 | MR | Zbl
[15] O. Martio, J. Sarvas, “Injectivity theorems in plane and space”, Ann. Acad. Sci. Fenn. Ser. A. I. Math., 4 (1978/79), 383–401 | DOI | MR
[16] V.G. Maz'ya, Sobolev Spaces. With Applications to Elliptic Partial Differential Equations, Springer, Berlin, 2011 | MR | Zbl
[17] A.I. Parfenov, “Series in a Lipschitz perturbation of the boundary for solving the Dirichlet problem”, Sib. Adv. Math., 27 (2017), 274–304 | DOI | MR | Zbl
[18] Yu.G. Reshetnyak, “Integral representations of differentiable functions in domains with non-smooth boundary”, Sib. Math. J., 21, 108–116 (Russian) | MR | Zbl
[19] B. Rodin, S.E. Warschawski, “Extremal length and the boundary behavior of conformal mappings”, Ann. Acad. Sci. Fenn. Ser. A. I. Math., 2 (1976), 467–500 | DOI | MR | Zbl
[20] B. Rodin, S.E. Warschawski, “A necessary and sufficient condition for the asymptotic version of Ahlfors' distortion property”, Trans. Amer. Math. Soc., 276 (1983), 281–288 | MR | Zbl
[21] P.M. Soardi, Potential Theory on Infinite Networks, Springer, Berlin, 1994 | MR | Zbl
[22] H. Triebel, Theory of Function Spaces, Birkhäuser Verlag, Basel, 1983 | MR | Zbl
[23] J. Väisälä, “Uniform domains”, Tôhoku Math. J., 40 (1988), 101–118 | DOI | MR | Zbl