Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a131, author = {A. G. Lipchinskij and V. N. Stolbov}, title = {Interpolation of analytic functions with finite number of special points by rational functions}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {863--881}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a131/} }
TY - JOUR AU - A. G. Lipchinskij AU - V. N. Stolbov TI - Interpolation of analytic functions with finite number of special points by rational functions JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2018 SP - 863 EP - 881 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a131/ LA - ru ID - SEMR_2018_15_a131 ER -
%0 Journal Article %A A. G. Lipchinskij %A V. N. Stolbov %T Interpolation of analytic functions with finite number of special points by rational functions %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2018 %P 863-881 %V 15 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a131/ %G ru %F SEMR_2018_15_a131
A. G. Lipchinskij; V. N. Stolbov. Interpolation of analytic functions with finite number of special points by rational functions. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 863-881. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a131/
[1] J.L. Walsh, Interpolation and approximation by rational functions in the complex domain, Izd-vo inostr. lit., M., 1961 | MR
[2] V.I. Smirnov, N.A. Lebedev, Constructive theory of functions of a complex variable, Nauka, M., 1964 | MR
[3] A.G. Lipchinskij, “Interpolation of analytic functions with finitely many singularities”, Siberian Mathematical Journal, 53:5 (2012), 821–838 | DOI | MR
[4] A.G. Lipchinskij, “Convergence Conditions for Interpolation Fractions at the Nodes Distinct from the Singular Points of a Function”, Siberian Mathematical Journal, 46:4 (2005), 652–660 | DOI | MR | Zbl
[5] V.L. Goncharov, “On the interpolation of functions with a finite number of singularities by means of rational functions”, Izv. AN SSSR Ser. mat., 1:2 (1937), 171–189 | MR
[6] B.Ya. Levin, Distribution of zeros of entire functions, Izd-vo inostr. lit., M., 1961 | MR
[7] N.G. De Brain, Asymptotic methods in analysis, Izd-vo inostr. lit., M., 1961 | MR
[8] A.O. Gelfond, Finite difference calculus, Nauka, M., 1967 | MR
[9] G. Polia, G. Szego, Problems and theorems from analysis, v. 1, Gostekhizdat, M., 1956
[10] A.G. Lipchinskij, “Convergence conditions for interpolation rational fractions with finitely many poles”, Siberian Mathematical Journal, 56:3 (2015), 442–454 | DOI | MR