Interpolation of analytic functions with finite number of special points by rational functions
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 863-881.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an interpolation process for a class of functions having a finite number of singular points, using rational functions the poles of which coincide with the singular points of the interpolated function. Interpolation points form a triangular matrix where there is at least about one special point of the interpolated function having the limit of the ratio of the difference between the number of nodes of the $n$-th row associated with a singular point, and the corresponding n fraction multiplicity pole at this point to when $n$ is different from zero. The necessary and sufficient conditions of uniform convergence on any compact, which does not contain the singular points of the function; the sequence of interpolation fractions to the interpolated function were found, as well as other convergence conditions. Results on the interpolation of functions with a finite number of singular points by rational fractions and entire functions by polynomials are generalized.
Keywords: analytic function, singular point of a function, rational function
Mots-clés : interpolation process, uniform convergence, convergence conditions.
@article{SEMR_2018_15_a131,
     author = {A. G. Lipchinskij and V. N. Stolbov},
     title = {Interpolation of analytic functions with finite number of special points by rational functions},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {863--881},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a131/}
}
TY  - JOUR
AU  - A. G. Lipchinskij
AU  - V. N. Stolbov
TI  - Interpolation of analytic functions with finite number of special points by rational functions
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 863
EP  - 881
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a131/
LA  - ru
ID  - SEMR_2018_15_a131
ER  - 
%0 Journal Article
%A A. G. Lipchinskij
%A V. N. Stolbov
%T Interpolation of analytic functions with finite number of special points by rational functions
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 863-881
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a131/
%G ru
%F SEMR_2018_15_a131
A. G. Lipchinskij; V. N. Stolbov. Interpolation of analytic functions with finite number of special points by rational functions. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 863-881. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a131/

[1] J.L. Walsh, Interpolation and approximation by rational functions in the complex domain, Izd-vo inostr. lit., M., 1961 | MR

[2] V.I. Smirnov, N.A. Lebedev, Constructive theory of functions of a complex variable, Nauka, M., 1964 | MR

[3] A.G. Lipchinskij, “Interpolation of analytic functions with finitely many singularities”, Siberian Mathematical Journal, 53:5 (2012), 821–838 | DOI | MR

[4] A.G. Lipchinskij, “Convergence Conditions for Interpolation Fractions at the Nodes Distinct from the Singular Points of a Function”, Siberian Mathematical Journal, 46:4 (2005), 652–660 | DOI | MR | Zbl

[5] V.L. Goncharov, “On the interpolation of functions with a finite number of singularities by means of rational functions”, Izv. AN SSSR Ser. mat., 1:2 (1937), 171–189 | MR

[6] B.Ya. Levin, Distribution of zeros of entire functions, Izd-vo inostr. lit., M., 1961 | MR

[7] N.G. De Brain, Asymptotic methods in analysis, Izd-vo inostr. lit., M., 1961 | MR

[8] A.O. Gelfond, Finite difference calculus, Nauka, M., 1967 | MR

[9] G. Polia, G. Szego, Problems and theorems from analysis, v. 1, Gostekhizdat, M., 1956

[10] A.G. Lipchinskij, “Convergence conditions for interpolation rational fractions with finitely many poles”, Siberian Mathematical Journal, 56:3 (2015), 442–454 | DOI | MR