Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a130, author = {P. Alestalo and D. A. Trotsenko}, title = {Radial extensions of bilipschitz maps between unit spheres}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {839--843}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a130/} }
TY - JOUR AU - P. Alestalo AU - D. A. Trotsenko TI - Radial extensions of bilipschitz maps between unit spheres JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2018 SP - 839 EP - 843 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a130/ LA - en ID - SEMR_2018_15_a130 ER -
P. Alestalo; D. A. Trotsenko. Radial extensions of bilipschitz maps between unit spheres. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 839-843. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a130/
[1] L. Cheng, Y. Dong, “On generalized Mazur-Ulam question: Extension of isometries between unit spheres of Banach spaces”, J. Math. Anal. Appl., 377:2 (2011), 464–470 | DOI | MR | Zbl
[2] L.C. Evans, R.F. Gariepy, Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC Press, 1992 | MR | Zbl
[3] J. Heinonen, Lectures on Lipschitz analysis, Department of Mathematics and Statistics Report, No 100, University of Jyväskylä, 2005 http://urn.fi/URN:ISBN:951-39-2318-5 | MR | Zbl
[4] D. Kalaj, “Radial extension of a bi-Lipschitz parametrization of a starlike Jordan curve”, Complex Var. Elliptic Equ., 59:6 (2014), 809–825 | DOI | MR | Zbl
[5] D. Kalaj, “On Lipschitz mappings of the unit circle onto a convex curve and their extension”, Filomat, 29:2 (2015), 263–274 | DOI | MR | Zbl
[6] D. Kalaj, M. Vuorinen, G. Wang, “On quasi-inversions”, Monatsh. Math., 180:4 (2016), 785–813 | DOI | MR | Zbl
[7] J. Luukkainen, J. Väisälä, “Elements of Lipschitz topology”, Ann. Acad. Sci. Fenn. Ser. A I Math., 3:1 (1977), 85–122 | DOI | MR | Zbl
[8] O. Martio, U. Srebro, “On the existence of automorphic quasimeromorphic mappings in $R^n$”, Ann. Acad. Sci. Fenn. Ser. A I Math., 3:1 (1977), 123–130 | DOI | MR | Zbl
[9] D.A. Trotsenko, “An extendability condition for bi-Lipschitz functions”, Sibirsk. Mat. Zh., 57 (2016), 1382–1388 | MR | Zbl
[10] J. Väisälä, “Bilipschitz and quasisymmetric extension properties”, Ann. Acad. Sci. Fenn. Ser. A I Math., 11 (1986), 239–274 | DOI | MR | Zbl