Radial extensions of bilipschitz maps between unit spheres
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 839-843

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $E_1$ and $E_2$ be real inner product spaces, and let $S_1$ and $S_2$ be the corresponding unit spheres. We consider different proofs showing that the radial extension of an $L$-bilipschitz map $f\colon S_1\to S_2$ is $L$-bilipschitz with the same constant $L$. We also consider certain other sets having this kind of an extension property.
Keywords: bilipschitz map, unit sphere.
@article{SEMR_2018_15_a130,
     author = {P. Alestalo and D. A. Trotsenko},
     title = {Radial extensions of bilipschitz maps between unit spheres},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {839--843},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a130/}
}
TY  - JOUR
AU  - P. Alestalo
AU  - D. A. Trotsenko
TI  - Radial extensions of bilipschitz maps between unit spheres
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 839
EP  - 843
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a130/
LA  - en
ID  - SEMR_2018_15_a130
ER  - 
%0 Journal Article
%A P. Alestalo
%A D. A. Trotsenko
%T Radial extensions of bilipschitz maps between unit spheres
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 839-843
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a130/
%G en
%F SEMR_2018_15_a130
P. Alestalo; D. A. Trotsenko. Radial extensions of bilipschitz maps between unit spheres. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 839-843. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a130/