Radial extensions of bilipschitz maps between unit spheres
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 839-843.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $E_1$ and $E_2$ be real inner product spaces, and let $S_1$ and $S_2$ be the corresponding unit spheres. We consider different proofs showing that the radial extension of an $L$-bilipschitz map $f\colon S_1\to S_2$ is $L$-bilipschitz with the same constant $L$. We also consider certain other sets having this kind of an extension property.
Keywords: bilipschitz map, unit sphere.
@article{SEMR_2018_15_a130,
     author = {P. Alestalo and D. A. Trotsenko},
     title = {Radial extensions of bilipschitz maps between unit spheres},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {839--843},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a130/}
}
TY  - JOUR
AU  - P. Alestalo
AU  - D. A. Trotsenko
TI  - Radial extensions of bilipschitz maps between unit spheres
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 839
EP  - 843
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a130/
LA  - en
ID  - SEMR_2018_15_a130
ER  - 
%0 Journal Article
%A P. Alestalo
%A D. A. Trotsenko
%T Radial extensions of bilipschitz maps between unit spheres
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 839-843
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a130/
%G en
%F SEMR_2018_15_a130
P. Alestalo; D. A. Trotsenko. Radial extensions of bilipschitz maps between unit spheres. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 839-843. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a130/

[1] L. Cheng, Y. Dong, “On generalized Mazur-Ulam question: Extension of isometries between unit spheres of Banach spaces”, J. Math. Anal. Appl., 377:2 (2011), 464–470 | DOI | MR | Zbl

[2] L.C. Evans, R.F. Gariepy, Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC Press, 1992 | MR | Zbl

[3] J. Heinonen, Lectures on Lipschitz analysis, Department of Mathematics and Statistics Report, No 100, University of Jyväskylä, 2005 http://urn.fi/URN:ISBN:951-39-2318-5 | MR | Zbl

[4] D. Kalaj, “Radial extension of a bi-Lipschitz parametrization of a starlike Jordan curve”, Complex Var. Elliptic Equ., 59:6 (2014), 809–825 | DOI | MR | Zbl

[5] D. Kalaj, “On Lipschitz mappings of the unit circle onto a convex curve and their extension”, Filomat, 29:2 (2015), 263–274 | DOI | MR | Zbl

[6] D. Kalaj, M. Vuorinen, G. Wang, “On quasi-inversions”, Monatsh. Math., 180:4 (2016), 785–813 | DOI | MR | Zbl

[7] J. Luukkainen, J. Väisälä, “Elements of Lipschitz topology”, Ann. Acad. Sci. Fenn. Ser. A I Math., 3:1 (1977), 85–122 | DOI | MR | Zbl

[8] O. Martio, U. Srebro, “On the existence of automorphic quasimeromorphic mappings in $R^n$”, Ann. Acad. Sci. Fenn. Ser. A I Math., 3:1 (1977), 123–130 | DOI | MR | Zbl

[9] D.A. Trotsenko, “An extendability condition for bi-Lipschitz functions”, Sibirsk. Mat. Zh., 57 (2016), 1382–1388 | MR | Zbl

[10] J. Väisälä, “Bilipschitz and quasisymmetric extension properties”, Ann. Acad. Sci. Fenn. Ser. A I Math., 11 (1986), 239–274 | DOI | MR | Zbl