A completeness criterion for sets of multifunctions in full partial ultraclone of rank 2
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 450-474.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of completeness for some class of discrete functions is studied. Functions from this class map finite cartesian powers of a two-element set $E$ to the set of all subsets of $E$. Functions of this kind are called multifunctions of rank $2$. We proved a necessary and sufficient condition of completeness using some special notion of superposition for an arbitrary set of functions from a given class.
Keywords: function of many-valued logic, multifunction, partial ultraclone, criterion of completeness.
@article{SEMR_2018_15_a13,
     author = {S. A. Badmaev},
     title = {A completeness criterion for sets of multifunctions in full partial ultraclone of rank 2},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {450--474},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a13/}
}
TY  - JOUR
AU  - S. A. Badmaev
TI  - A completeness criterion for sets of multifunctions in full partial ultraclone of rank 2
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 450
EP  - 474
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a13/
LA  - ru
ID  - SEMR_2018_15_a13
ER  - 
%0 Journal Article
%A S. A. Badmaev
%T A completeness criterion for sets of multifunctions in full partial ultraclone of rank 2
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 450-474
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a13/
%G ru
%F SEMR_2018_15_a13
S. A. Badmaev. A completeness criterion for sets of multifunctions in full partial ultraclone of rank 2. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 450-474. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a13/

[1] E. L. Post, “Introduction to a General Theory of Elementary Proposition”, Amer. J. Math., 43:4 (1921), 163–185 | DOI | MR | Zbl

[2] S.V. Yablonsky, “Functional Constructions in k-valued Logic”, Tr. MIAN USSR, 51 (1958), 5–142

[3] I. Rosenberg, “Über die Functionale Vollständigkeit in Den Mehrwertigen Logiken (Struktur der Funktionen von Mehreren Ver$\ddot{a}$nderlichen auf Endlichen Mengen”, Rozpravy Ceskoslovenske Akad. Vëd. Rada Mat. Prirod. Vëd., 80 (1970), 3–93 | MR | Zbl

[4] Wang Xianghao, “Structure Theory of Total and Partial Functions Defined on Finite Set”, Acta Sci. Natur. Univ. Jiliensis, 2:6 (1963), 295–316

[5] R.V. Freiwald, “On Completeness of Partial Functions of Boolean Algebra”, DAN USSR, 167:6 (1966), 1249–1250 (in Russian)

[6] Lo Czu Kai, “Maximal Closed Classes in the Set of Partial Functions on Multi Valued Logic”, Kiberneticheskiy Sbornik. Novaya seriya, 25 (1988), 131–141

[7] V. V. Tarasov, “Completeness Criterion for Undefined Functions of Boolean Algebra”, Problemy Kibernetiki, 30 (1975), 319–325 (in Russian) | Zbl

[8] V.I. Panteleev, “Completeness Criterion for Predefined Boolean Functions”, Vestnik Samar. Gos. Univ. Est.-Naush. Ser., 2:68 (2009), 60–79 (in Russian) | Zbl

[9] V.I. Panteleev, “Completeness Criterion for Sub-defined Partial Boolean Functions”, Vestnik Novosibir. Gos. Univ. Ser.: Matem., Mechan., Inform., 9:3 (2009), 95–114 (in Russian) | Zbl

[10] S.A. Badmaev, “Completeness Criterion for Partial Ultrafunctions”, Collection of Abstracts of Maltsev Meeting, 2016, 172 (in Russian)

[11] S.A. Badmaev, I.K. Sharankhaev, “On Maximal Clones of Partial Ultrafunctions on a Two-element Set”, Izvestiya Irk. Gos. Univ. Ser. Matematika, 16 (2016), 3–18 (in Russian) | DOI | MR | Zbl

[12] V.I. Panteleyev, “On Two Maximal Multiclones and Partial Ultraclones”, Izvestiya Irk. Gos. Univ. Ser. Matematika, 5:4 (2012), 46–53 (in Russian) | Zbl

[13] S.A. Badmaev, “On Some Maximal Partial Ultraclones on a Two-element set”, Izvestiya Irk. Gos. Univ. Ser. Matematika, 21 (2017), 3–18 (in Russian) | MR | Zbl

[14] S.A. Badmaev, “On Some Maximal Clone of Partial Ultrafunctions on a Two-element Set”, Journal of Siberian Federal University. Mathematics and Physics, 10:2 (2017), 140–145 | DOI | MR

[15] S.A. Badmaev, “On Complete Sets of Partial Ultrafunctions on a Two-element Set”, Vestnik Buryat. Gos. Univ. Matem., Inform., 3 (2015), 61–67 (in Russian) | MR