Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a13, author = {S. A. Badmaev}, title = {A completeness criterion for sets of multifunctions in full partial ultraclone of rank 2}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {450--474}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a13/} }
TY - JOUR AU - S. A. Badmaev TI - A completeness criterion for sets of multifunctions in full partial ultraclone of rank 2 JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2018 SP - 450 EP - 474 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a13/ LA - ru ID - SEMR_2018_15_a13 ER -
S. A. Badmaev. A completeness criterion for sets of multifunctions in full partial ultraclone of rank 2. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 450-474. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a13/
[1] E. L. Post, “Introduction to a General Theory of Elementary Proposition”, Amer. J. Math., 43:4 (1921), 163–185 | DOI | MR | Zbl
[2] S.V. Yablonsky, “Functional Constructions in k-valued Logic”, Tr. MIAN USSR, 51 (1958), 5–142
[3] I. Rosenberg, “Über die Functionale Vollständigkeit in Den Mehrwertigen Logiken (Struktur der Funktionen von Mehreren Ver$\ddot{a}$nderlichen auf Endlichen Mengen”, Rozpravy Ceskoslovenske Akad. Vëd. Rada Mat. Prirod. Vëd., 80 (1970), 3–93 | MR | Zbl
[4] Wang Xianghao, “Structure Theory of Total and Partial Functions Defined on Finite Set”, Acta Sci. Natur. Univ. Jiliensis, 2:6 (1963), 295–316
[5] R.V. Freiwald, “On Completeness of Partial Functions of Boolean Algebra”, DAN USSR, 167:6 (1966), 1249–1250 (in Russian)
[6] Lo Czu Kai, “Maximal Closed Classes in the Set of Partial Functions on Multi Valued Logic”, Kiberneticheskiy Sbornik. Novaya seriya, 25 (1988), 131–141
[7] V. V. Tarasov, “Completeness Criterion for Undefined Functions of Boolean Algebra”, Problemy Kibernetiki, 30 (1975), 319–325 (in Russian) | Zbl
[8] V.I. Panteleev, “Completeness Criterion for Predefined Boolean Functions”, Vestnik Samar. Gos. Univ. Est.-Naush. Ser., 2:68 (2009), 60–79 (in Russian) | Zbl
[9] V.I. Panteleev, “Completeness Criterion for Sub-defined Partial Boolean Functions”, Vestnik Novosibir. Gos. Univ. Ser.: Matem., Mechan., Inform., 9:3 (2009), 95–114 (in Russian) | Zbl
[10] S.A. Badmaev, “Completeness Criterion for Partial Ultrafunctions”, Collection of Abstracts of Maltsev Meeting, 2016, 172 (in Russian)
[11] S.A. Badmaev, I.K. Sharankhaev, “On Maximal Clones of Partial Ultrafunctions on a Two-element Set”, Izvestiya Irk. Gos. Univ. Ser. Matematika, 16 (2016), 3–18 (in Russian) | DOI | MR | Zbl
[12] V.I. Panteleyev, “On Two Maximal Multiclones and Partial Ultraclones”, Izvestiya Irk. Gos. Univ. Ser. Matematika, 5:4 (2012), 46–53 (in Russian) | Zbl
[13] S.A. Badmaev, “On Some Maximal Partial Ultraclones on a Two-element set”, Izvestiya Irk. Gos. Univ. Ser. Matematika, 21 (2017), 3–18 (in Russian) | MR | Zbl
[14] S.A. Badmaev, “On Some Maximal Clone of Partial Ultrafunctions on a Two-element Set”, Journal of Siberian Federal University. Mathematics and Physics, 10:2 (2017), 140–145 | DOI | MR
[15] S.A. Badmaev, “On Complete Sets of Partial Ultrafunctions on a Two-element Set”, Vestnik Buryat. Gos. Univ. Matem., Inform., 3 (2015), 61–67 (in Russian) | MR