A completeness criterion for sets of multifunctions in full partial ultraclone of rank 2
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 450-474

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of completeness for some class of discrete functions is studied. Functions from this class map finite cartesian powers of a two-element set $E$ to the set of all subsets of $E$. Functions of this kind are called multifunctions of rank $2$. We proved a necessary and sufficient condition of completeness using some special notion of superposition for an arbitrary set of functions from a given class.
Keywords: function of many-valued logic, multifunction, partial ultraclone, criterion of completeness.
@article{SEMR_2018_15_a13,
     author = {S. A. Badmaev},
     title = {A completeness criterion for sets of multifunctions in full partial ultraclone of rank 2},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {450--474},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a13/}
}
TY  - JOUR
AU  - S. A. Badmaev
TI  - A completeness criterion for sets of multifunctions in full partial ultraclone of rank 2
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 450
EP  - 474
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a13/
LA  - ru
ID  - SEMR_2018_15_a13
ER  - 
%0 Journal Article
%A S. A. Badmaev
%T A completeness criterion for sets of multifunctions in full partial ultraclone of rank 2
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 450-474
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a13/
%G ru
%F SEMR_2018_15_a13
S. A. Badmaev. A completeness criterion for sets of multifunctions in full partial ultraclone of rank 2. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 450-474. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a13/