Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a129, author = {K. G. Kamalutdinov and A. V. Tetenov}, title = {Twofold {Cantor} sets in $\mathbb{R}$}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {801--814}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a129/} }
K. G. Kamalutdinov; A. V. Tetenov. Twofold Cantor sets in $\mathbb{R}$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 801-814. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a129/
[1] Ch. Bandt, S. Graf, “Self-similar sets 7. A characterization of self-similar fractals with positive Hausdorff measure”, Proc. Amer. Math. Soc., 114:4 (1992), 995–1001 | MR | Zbl
[2] B. Barany, “On the Hausdorff dimension of a family of self-similar sets with complicated overlaps”, Fund. Math., 206 (2009), 49–59 | DOI | MR | Zbl
[3] B. Barany, “Iterated function systems with non-distinct fixed points”, J. Appl. Math. Anal. Appl., 383:1 (2011), 244–258 | DOI | MR | Zbl
[4] M.F. Barnsley, Fractals Everywhere, Academic Press, Orlando, Florida, 1988 | MR | Zbl
[5] N. Bourbaki, General Topology, Chapters 5–10, Springer-Verlag, Berlin–Heidelberg, 1989 | MR
[6] K. J. Falconer, Fractal geometry: mathematical foundations and applications, J. Wiley and Sons, New York, 1990 | MR | Zbl
[7] J. Hutchinson, “Fractals and self-similarity”, Indiana Univ. Math. J., 30:5 (1981), 713–747 | DOI | MR | Zbl
[8] K. Kuratowski, Topology, v. 1, PWN and Acad. Press, 1966 | MR | Zbl
[9] K. S. Lau, S. M. Ngai, “Multifractal measures and a weak separation condition”, Adv. Math., 141 (1999), 45–96 | DOI | MR | Zbl
[10] E. Moise, Geometric Topology in Dimensions 2 and 3, Springer-Verlag, New York, 1977 | MR | Zbl
[11] M. Pollicott, K. Simon, “The Hausdorff dimension of $\lambda$-expansions with deleted digits”, Trans. Am. Math. Soc., 347:3 (1995), 967–983 | MR | Zbl
[12] K. Simon, B. Solomyak, M. Urbański, “Hausdorff dimension of limit sets for parabolic IFS with overlaps”, Pacific J. Math., 201:2 (2001), 441–478 | DOI | MR | Zbl
[13] B. Solomyak, “On the random series $\sum\pm\lambda^i$ (an Erdos problem)”, Annals of Math., 142 (1995), 611–625 | DOI | MR | Zbl
[14] A. V. Tetenov, “Self-similar Jordan arcs and graph-oriented IFS”, Sib. Math. J., 47:5 (2006), 1147–1153 | DOI | MR
[15] A. V. Tetenov, “On the rigidity of one-dimensional systems of contraction similitudes”, Sib. Elektron. Mat. Izv., 3 (2006), 342–345 | MR | Zbl
[16] A. Tetenov, K. Kamalutdinov, D. Vaulin, Self-similar Jordan arcs which do not satisfy OSC, arXiv: 1512.00290
[17] M. P. W. Zerner, “Weak separation properties for self-similar sets”, Proc. Amer. Math. Soc., 124:11 (1996), 3529–3539 | DOI | MR | Zbl