On the connection between the generalized Riemann boundary value problem and the truncated Wiener--Hopf equation
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 412-421.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we an equivalen find a connection between the generalized Riemann boundary value problem (also known under the name of the Markushevich boundary problem or the ${\mathbb R}$-linear problem) and convolution equation of the second kind on a finite interval.
Keywords: ${\mathbb R}$-linear problem, problem of Markushevich, Riemann boundary value problems, factorization of matrix functions, factorization indices, stability
Mots-clés : unique, convolution equation.
@article{SEMR_2018_15_a127,
     author = {A. F. Voronin},
     title = {On the connection between the generalized {Riemann} boundary value problem and the truncated {Wiener--Hopf} equation},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {412--421},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a127/}
}
TY  - JOUR
AU  - A. F. Voronin
TI  - On the connection between the generalized Riemann boundary value problem and the truncated Wiener--Hopf equation
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 412
EP  - 421
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a127/
LA  - ru
ID  - SEMR_2018_15_a127
ER  - 
%0 Journal Article
%A A. F. Voronin
%T On the connection between the generalized Riemann boundary value problem and the truncated Wiener--Hopf equation
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 412-421
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a127/
%G ru
%F SEMR_2018_15_a127
A. F. Voronin. On the connection between the generalized Riemann boundary value problem and the truncated Wiener--Hopf equation. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 412-421. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a127/

[1] F. D. Gakhov, Boundary Value Problems, Dover Publication Inc., New-York, 1990 | MR | Zbl

[2] Georgii S. Litvinchuk, Solvability Theory of Boundary Value Problems and Singular Integral Equations with Shift, Springer Science, Business Media, 2012 | MR

[3] Vladimir V. Mityushev, “${\mathbb R}$-linear and Riemann–Hilbert Problems for Multiply Connected Domains”, Advances in Applied Analysis, Trends in Mathematics, 2012, 147–-176 | MR | Zbl

[4] Muskhelishvili N.I., “To the problem of torsion and bending of beams constituted from different materials”, Izv. AN SSSR, 7 (1932), 907–-945 (In Russian) | MR | Zbl

[5] Vekua I.N., Rukhadze A.K., “The problem of the torsion of circular cylinder reinforced by transversal circular beam”, Izv. AN SSSR, 3 (1933), 373–-386 (In Russian) | Zbl

[6] Golusin G.M., “Solution of plane heat conduction problem for multiply connected domains enclosed by circles in the case of isolated layer”, Math. zb., 42 (1935), 191–-198 (In Russian) | Zbl

[7] A. I. Markushevich, “Ob odnoi granichnoi zadache teorii analiticheskikh funktsii”, Uchenye zapiski MGU, 100 (1946), 20–30 | MR

[8] Vekua N. P., “On a boundary problem of the theory of functions of a complex variable for several unknown functions”, Izvestiya Akad. Nauk SSSR. Ser. Mat., 16 (1952), 157–-180 (In Russian) | MR | Zbl

[9] Bojarski B.V., “On the generalized boundary value problem of Hilbert”, Communications of the Academy of Sciences of the Georgian SSR, 25:4 (1960), 385–390 (In Russian) | MR

[10] L. G. Mikhailov, “A general boundary-value problem for infinitesimal bending of fused surfaces”, Izv. Vyssh. Uchebn. Zaved. Mat., 5 (1960), 99–109 (In Russian) | MR | Zbl

[11] Mihailov L. G., “The general conjugacy problem for analytic functions and its applications”, Izv. Akad. Nauk SSSR Ser. Mat., 27:5 (1963), 969–-992 (In Russian) | MR

[12] Sabitov I.Kh., “On the general boundary-value problem of linear conjugation on a circle”, Siberian Mathematical Journal, 5:1 (1964) (In Russian) | MR

[13] Litvinchuk G. S., “Dve teoremy ob ustoichivosti chastnykh indeksov kraevoi zadachi Rimana i ikh prilozhenie”, Izv. vuzov. Matematika, 12 (1967), 47–57 | Zbl

[14] G. S. Litvinchuk, I. M. Spitkovsky, “Sharp estimates of defect numbers of a generalized Riemann boundary value problem, factorization of hermitian matrix-valued functions and some problems of approximation by meromorphic functions”, Math. USSR-Sb., 45:2 (1983), 205–-224 | DOI | MR | Zbl

[15] Voronin A. F., “Conditions for the stability and uniqueness of the solution of the Markushevich problem”, Sib. Elektron. Matem. Izv., 14 (2017), 511–517 (In Russian) | MR | Zbl

[16] V. M. Adukov, A. A. Patrushev, “On explicit and exact solutions of the Markushevich boundary problem for circle”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 11:2 (2011), 9–20 (In Russian)

[17] Idzhad Kh. Sabitov, “Markushevich's ill-posed boundary-value problem for multiply connected domains with circular boundaries”, Izvestiya: Mathematics, 76:6 (2012), 1218–1256 | DOI | MR | Zbl

[18] N.I. Muskhelishvili, Singular integral equations, Wolters-Noordhoff Publ., Groningen, 1972 | MR

[19] Gokhberg I. Ts., Krein M. G., “Sistemy integralnykh uravnenii na polupryamoi s yadrami, zavisyaschimi ot raznosti argumentov”, Uspekhi mat. nauk, 13:2 (1958), 3–72 | MR

[20] Voronin A.F., “A complete generalization of the Wiener-Hopf method to convolution integral equations with integrable kernel on a finite interval”, Differential Equations, 40:9 (2004), 1259–-1267 | DOI | MR | Zbl

[21] Voronin A.F., “Systems of convolution equations of the first and second kind on a finite interval and factorization of matrix-functions”, Sib. Math. J., 53:5 (2012), 781–-791 | DOI | MR | Zbl