On the connection between the generalized Riemann boundary value problem and the truncated Wiener--Hopf equation
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 412-421

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we an equivalen find a connection between the generalized Riemann boundary value problem (also known under the name of the Markushevich boundary problem or the ${\mathbb R}$-linear problem) and convolution equation of the second kind on a finite interval.
Keywords: ${\mathbb R}$-linear problem, problem of Markushevich, Riemann boundary value problems, factorization of matrix functions, factorization indices, stability
Mots-clés : unique, convolution equation.
@article{SEMR_2018_15_a127,
     author = {A. F. Voronin},
     title = {On the connection between the generalized {Riemann} boundary value problem and the truncated {Wiener--Hopf} equation},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {412--421},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a127/}
}
TY  - JOUR
AU  - A. F. Voronin
TI  - On the connection between the generalized Riemann boundary value problem and the truncated Wiener--Hopf equation
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 412
EP  - 421
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a127/
LA  - ru
ID  - SEMR_2018_15_a127
ER  - 
%0 Journal Article
%A A. F. Voronin
%T On the connection between the generalized Riemann boundary value problem and the truncated Wiener--Hopf equation
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 412-421
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a127/
%G ru
%F SEMR_2018_15_a127
A. F. Voronin. On the connection between the generalized Riemann boundary value problem and the truncated Wiener--Hopf equation. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 412-421. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a127/