Some problems of regularity of $f$-quasimetrics
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 355-361.

Voir la notice de l'article provenant de la source Math-Net.Ru

We get a new proof for validity of $T_4$-axiom of separation for weak symmetric $f$-quasimetric spaces. Using this proof we get $T_4$-property for more general classes of $f$-quasimetric spaces. We construct the symmetric $(q,q)$-quasimetric space $(X,d)$ such that distance function $d(u,v)$ is continuous to each variables but $\lim\limits_{n\to\infty}(\rho(x_0,x_n)+\rho(y_0,y_n))=0\nRightarrow\lim\limits_{n\to \infty}\rho(x_n,y_n)=\rho(x_0,y_0)$.
Keywords: distance function, open set, interior and closure of a set, weak symmetry, separation axioms
Mots-clés : $f$-quasimetric, convergence.
@article{SEMR_2018_15_a125,
     author = {A. V. Greshnov},
     title = {Some problems of regularity of $f$-quasimetrics},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {355--361},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a125/}
}
TY  - JOUR
AU  - A. V. Greshnov
TI  - Some problems of regularity of $f$-quasimetrics
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 355
EP  - 361
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a125/
LA  - ru
ID  - SEMR_2018_15_a125
ER  - 
%0 Journal Article
%A A. V. Greshnov
%T Some problems of regularity of $f$-quasimetrics
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 355-361
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a125/
%G ru
%F SEMR_2018_15_a125
A. V. Greshnov. Some problems of regularity of $f$-quasimetrics. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 355-361. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a125/

[1] A. V. Arutyunov, A. V. Greshnov, L. V. Lokutsievskii, K. V. Storojuk, “Topological and geometrical properties of spaces with symmetric and nonsymmetric $f$-quasimetrics”, Top. Appl., 221 (2017), 178–194 | DOI | MR

[2] W. A. Wilson, “On quasi-metric spaces”, American J. of Math., 53:3 (1931), 675–684 | DOI | MR

[3] A. V. Arutyunov, A. V. Greshnov, “The theory of $(q_1,q_2)$-quasimetric spaces and coincidence points”, Doklady Mathematics, 94:1 (2016), 434–437 | DOI | MR | Zbl

[4] A. V. Greshnov, “Regularization of distance functions and separation axioms on $(q_1,q_2)$-quasimetric spaces”, Siberian Electronic Mathematical Reports, 14 (2017), 765–773 | MR

[5] S. V. Selivanova, “The tangent cone to a quasimetric space with dilations”, Siberian Math. J., 51:2 (2010), 313–324 | DOI | MR | Zbl

[6] E. M. Stein, Harmonic analysis: real-variables methods, orthogonality and oscillatory integrals, Princeton Univ. Press, 1993 | MR