Mots-clés : $f$-quasimetric, convergence.
@article{SEMR_2018_15_a125,
author = {A. V. Greshnov},
title = {Some problems of regularity of $f$-quasimetrics},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {355--361},
year = {2018},
volume = {15},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a125/}
}
A. V. Greshnov. Some problems of regularity of $f$-quasimetrics. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 355-361. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a125/
[1] A. V. Arutyunov, A. V. Greshnov, L. V. Lokutsievskii, K. V. Storojuk, “Topological and geometrical properties of spaces with symmetric and nonsymmetric $f$-quasimetrics”, Top. Appl., 221 (2017), 178–194 | DOI | MR
[2] W. A. Wilson, “On quasi-metric spaces”, American J. of Math., 53:3 (1931), 675–684 | DOI | MR
[3] A. V. Arutyunov, A. V. Greshnov, “The theory of $(q_1,q_2)$-quasimetric spaces and coincidence points”, Doklady Mathematics, 94:1 (2016), 434–437 | DOI | MR | Zbl
[4] A. V. Greshnov, “Regularization of distance functions and separation axioms on $(q_1,q_2)$-quasimetric spaces”, Siberian Electronic Mathematical Reports, 14 (2017), 765–773 | MR
[5] S. V. Selivanova, “The tangent cone to a quasimetric space with dilations”, Siberian Math. J., 51:2 (2010), 313–324 | DOI | MR | Zbl
[6] E. M. Stein, Harmonic analysis: real-variables methods, orthogonality and oscillatory integrals, Princeton Univ. Press, 1993 | MR