New identities for a sum of products of the Kummer functions
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 267-276.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this note we present a summation formula for the Clausen series ${}_3F_{2}(1)$ with two integral parameter differences of opposite sign and apply it to give a generalization of a particular case of a very general reduction formula for a sum of products of the generalized hypergeometric functions discovered recently by Feng, Kuznetsov and Yang (J. Math. Anal. Appl. 443(2016), 116–122). Our generalization pertains to the case when the generalized hypergeometric function is reduced to the Kummer function ${}_1F_1$ and contains an additional integer shift in the bottom parameter of the Kummer function. In the ultimate section of the paper we prove another formula for a particular product difference of the Kummer functions in terms of a linear combination of these functions.
Keywords: Kummer function, Clausen function, hypergeometric identity, summation theorem, duality relations for hypergeometric functions.
@article{SEMR_2018_15_a124,
     author = {S. I. Kalmykov and D. B. Karp},
     title = {New identities for a sum of products of the {Kummer} functions},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {267--276},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a124/}
}
TY  - JOUR
AU  - S. I. Kalmykov
AU  - D. B. Karp
TI  - New identities for a sum of products of the Kummer functions
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 267
EP  - 276
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a124/
LA  - en
ID  - SEMR_2018_15_a124
ER  - 
%0 Journal Article
%A S. I. Kalmykov
%A D. B. Karp
%T New identities for a sum of products of the Kummer functions
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 267-276
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a124/
%G en
%F SEMR_2018_15_a124
S. I. Kalmykov; D. B. Karp. New identities for a sum of products of the Kummer functions. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 267-276. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a124/

[1] G.D. Anderson, S.-L. Qiu, M.K. Vamanamurthy, M. Vuorinen, “Generalized elliptic integrals and modular equations”, Pacific J. Math., 192:1 (2000), 1–37 | DOI | MR

[2] G.E. Andrews, R. Askey, R. Roy, Special functions, Cambridge University Press, 1999 | MR

[3] W.N. Bailey, “On certain relations between hypergeometric series of higher order”, J. London Math. Soc., 8:2 (1933), 100–107 | DOI | MR

[4] R. Balasubramanian, S. Naik, S. Ponnusamy, M. Vuorinen, “Elliott's identity and hypergeometric functions”, J. Math. Anal. Appl., 271:1 (2002), 232–256 | DOI | MR

[5] F. Beukers, F. Jouhet, “Duality relations for hypergeometric series”, Bulletin of the London Mathematical Society, 47:2 (2015), 343–358 | DOI | MR

[6] H.B.C. Darling, “On certain relations between hypergeometric series of higher orders”, Proc. London Math. Soc. (2), 34:5 (1932), 323–339 | DOI | MR

[7] A. Ebisu, “Three Term Relations for the Hypergeometric Series”, Funkcialaj Ekvacioj, 55:2 (2012), 255–283 | DOI | MR

[8] O. Gomilko, D.B. Karp, M. Lin, K. Zietak, “Regions of convergence of a Pade family of iterations for the matrix sector function and the matrix pth root”, Journal of Computational and Applied Mathematics, 236 (2012), 4410–4420 | DOI | MR

[9] V.A. Gorelov, “On algebraic identities between generalized hypergeometric functions”, Mathematical Notes, 88:4 (2010), 487–491 | DOI | MR

[10] R. Feng, A. Kuznetsov, F. Yang, “A short proof of duality relations for hypergeometric functions”, J. Math. Anal. Appl., 443:1 (2016), 116–122 | DOI | MR

[11] S.I. Kalmykov, D.B. Karp, “Log-concavity for series in reciprocal gamma functions and applications”, Integral Transforms Spec. Funct., 24:11 (2013), 859–872 | DOI | MR

[12] S.I. Kalmykov, D.B. Karp, “Log-convexity and log-concavity for series in gamma ratios and applications”, J. Math. Anal. Appl., 406:2 (2013), 400–418 | DOI | MR

[13] P.W. Karlsson, “Hypergeometric functions with integral parameter differences”, J. Math. Phys., 12 (1971), 270–271 | DOI | MR

[14] P.W. Karlsson, “Reduction of hypergeometric functions with integral parameter differences”, Neder. Akad. Wetensch. Indag. Math., 36 (1974), 195–198 | DOI | MR

[15] Y.S. Kim, A.K. Rathie, “A New Proof of Saalschütz's Theorem for the Series ${}_3F_2(1)$ and its Contiguous Results with Applications”, Commun. Korean Math. Soc., 27:1 (2012), 129–135 | DOI | MR

[16] A.R. Miller, R.B. Paris, “Clausen's series $3F2(1)$ with integral parameter differences and transformations of the hypergeometric function $2F2(x)$”, Integral Transforms and Special Functions, 23:1 (2012), 21–33 | DOI | MR

[17] A.R. Miller, H. M. Srivastava, “Karlsson–Minton summation theorems for the generalized hypergeometric series of unit argument”, Integral Transforms and Special Functions, 21:8 (2010), 603–612 | DOI | MR

[18] Yu.V. Nesterenko, “Hermite-Padé Approximants of Generalized Hypergeometric Functions”, Russian Acad. Sci. Sb. Math., 83:1 (1995), 189–219 | MR

[19] A.P. Prudnikov, Yu.A. Brychkov, O.I. Marichev, Integrals and Series: More Special Functions, v. 3, Gordon and Breach Science Publishers, New York, 1990 | MR

[20] K.S. Rao, J. Van der Jeugt, J. Raynal, R. Jagannathan, V. Rajeswari, “Group theoretical basis for the terminating $3F2(1)$ series”, J. Phys. A Math. Gen., 25 (1992), 861–876 | DOI | MR

[21] M.A. Shpot, H.M. Srivastava, “The Clausenian hypergeometric function $3F2$ with unit argument and negative integral parameter differences”, Applied Mathematics and Computation, 259 (2015), 819–827 | DOI | MR