Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a124, author = {S. I. Kalmykov and D. B. Karp}, title = {New identities for a sum of products of the {Kummer} functions}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {267--276}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a124/} }
TY - JOUR AU - S. I. Kalmykov AU - D. B. Karp TI - New identities for a sum of products of the Kummer functions JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2018 SP - 267 EP - 276 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a124/ LA - en ID - SEMR_2018_15_a124 ER -
S. I. Kalmykov; D. B. Karp. New identities for a sum of products of the Kummer functions. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 267-276. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a124/
[1] G.D. Anderson, S.-L. Qiu, M.K. Vamanamurthy, M. Vuorinen, “Generalized elliptic integrals and modular equations”, Pacific J. Math., 192:1 (2000), 1–37 | DOI | MR
[2] G.E. Andrews, R. Askey, R. Roy, Special functions, Cambridge University Press, 1999 | MR
[3] W.N. Bailey, “On certain relations between hypergeometric series of higher order”, J. London Math. Soc., 8:2 (1933), 100–107 | DOI | MR
[4] R. Balasubramanian, S. Naik, S. Ponnusamy, M. Vuorinen, “Elliott's identity and hypergeometric functions”, J. Math. Anal. Appl., 271:1 (2002), 232–256 | DOI | MR
[5] F. Beukers, F. Jouhet, “Duality relations for hypergeometric series”, Bulletin of the London Mathematical Society, 47:2 (2015), 343–358 | DOI | MR
[6] H.B.C. Darling, “On certain relations between hypergeometric series of higher orders”, Proc. London Math. Soc. (2), 34:5 (1932), 323–339 | DOI | MR
[7] A. Ebisu, “Three Term Relations for the Hypergeometric Series”, Funkcialaj Ekvacioj, 55:2 (2012), 255–283 | DOI | MR
[8] O. Gomilko, D.B. Karp, M. Lin, K. Zietak, “Regions of convergence of a Pade family of iterations for the matrix sector function and the matrix pth root”, Journal of Computational and Applied Mathematics, 236 (2012), 4410–4420 | DOI | MR
[9] V.A. Gorelov, “On algebraic identities between generalized hypergeometric functions”, Mathematical Notes, 88:4 (2010), 487–491 | DOI | MR
[10] R. Feng, A. Kuznetsov, F. Yang, “A short proof of duality relations for hypergeometric functions”, J. Math. Anal. Appl., 443:1 (2016), 116–122 | DOI | MR
[11] S.I. Kalmykov, D.B. Karp, “Log-concavity for series in reciprocal gamma functions and applications”, Integral Transforms Spec. Funct., 24:11 (2013), 859–872 | DOI | MR
[12] S.I. Kalmykov, D.B. Karp, “Log-convexity and log-concavity for series in gamma ratios and applications”, J. Math. Anal. Appl., 406:2 (2013), 400–418 | DOI | MR
[13] P.W. Karlsson, “Hypergeometric functions with integral parameter differences”, J. Math. Phys., 12 (1971), 270–271 | DOI | MR
[14] P.W. Karlsson, “Reduction of hypergeometric functions with integral parameter differences”, Neder. Akad. Wetensch. Indag. Math., 36 (1974), 195–198 | DOI | MR
[15] Y.S. Kim, A.K. Rathie, “A New Proof of Saalschütz's Theorem for the Series ${}_3F_2(1)$ and its Contiguous Results with Applications”, Commun. Korean Math. Soc., 27:1 (2012), 129–135 | DOI | MR
[16] A.R. Miller, R.B. Paris, “Clausen's series $3F2(1)$ with integral parameter differences and transformations of the hypergeometric function $2F2(x)$”, Integral Transforms and Special Functions, 23:1 (2012), 21–33 | DOI | MR
[17] A.R. Miller, H. M. Srivastava, “Karlsson–Minton summation theorems for the generalized hypergeometric series of unit argument”, Integral Transforms and Special Functions, 21:8 (2010), 603–612 | DOI | MR
[18] Yu.V. Nesterenko, “Hermite-Padé Approximants of Generalized Hypergeometric Functions”, Russian Acad. Sci. Sb. Math., 83:1 (1995), 189–219 | MR
[19] A.P. Prudnikov, Yu.A. Brychkov, O.I. Marichev, Integrals and Series: More Special Functions, v. 3, Gordon and Breach Science Publishers, New York, 1990 | MR
[20] K.S. Rao, J. Van der Jeugt, J. Raynal, R. Jagannathan, V. Rajeswari, “Group theoretical basis for the terminating $3F2(1)$ series”, J. Phys. A Math. Gen., 25 (1992), 861–876 | DOI | MR
[21] M.A. Shpot, H.M. Srivastava, “The Clausenian hypergeometric function $3F2$ with unit argument and negative integral parameter differences”, Applied Mathematics and Computation, 259 (2015), 819–827 | DOI | MR