Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a123, author = {V. V. Aseev}, title = {The coefficient of quasim\"obiusness in {Ptolemaic} spaces}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {246--257}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a123/} }
V. V. Aseev. The coefficient of quasim\"obiusness in Ptolemaic spaces. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 246-257. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a123/
[1] M.L. Blumenthal, Theory and Applications of Distance Geometry, Clarendod Press, Oxford, 1953 | MR
[2] J. Väisälä, “Quasimöbius maps”, J. Anal. Math., 44 (1984/85), 218–234 | DOI | MR
[3] P. Tukia, J. Väisälä, “Quasisymmetric embeddings of metric spaces”, Ann. Acad. Sci. Fenn. Ser. AI Math., 5:1 (1980), 97–114 | DOI | MR
[4] D.A. Trotsenko, J. Väisälä, “Upper sets and quasisymmetric maps”, Ann. Acad. Sci. Fenn. Ser. AI Math., 24:2 (1999), 465–488 | MR
[5] V.V. Aseev, A.V. Sychev, A.V. Tetenov, “Möbius-invariant metrics and generalized angles in ptolemeic spaces”, Sib. Math. J., 46:2 (2005), 189–204 | DOI | MR
[6] F.W. Gehring, J. Väisälä, “The coefficients of quasiconformality of domains in space”, Acta Math., 114:1–2 (1965), 1–70 | DOI | MR
[7] P. Tukia, J. Väisälä, “Extension of embeddings close to isometries or similarities”, Ann. Acad. Sci. Fenn. Ser. AI Math., 9 (1984), 153–175 | DOI | MR
[8] J. Partanen, “Invariance theorems for the bilipschitz and quasisymmetric extension properties”, Ann. Acad. Sci. Fenn. Ser. AI Math. Dissert., 80 (1991), 1–40 | MR
[9] P. Alestalo, D.A. Trotsenko, “On mappings that are close to a similarity”, Math. Rep., Buchar., 15(65):4 (2013), 313–318 | MR