The coefficient of quasim\"obiusness in Ptolemaic spaces
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 246-257.

Voir la notice de l'article provenant de la source Math-Net.Ru

In ptolemaic spaces the class of $\eta$-quasimöbius mappings $f: X\to Y$ with control function $\eta(t)= C \max\{ t^{\alpha}, t^{1/\alpha}\}$ may be completely characterized by the inequality $ K^{-1}\leq (1 + \log P(fT))/(1+ \log P(T)) \leq K$ for all tetrads $T\subset X$ where $P(T)$ denotes the ptolemaic characteristic of a tetrad. The number $K$ has properties quite similar to those of coefficients of quasiconformality, so the concept of $K$-quasimöbius mapping may be introduced. In particular, the stability theorem is proved for $(1+\varepsilon)$-quasimöbius mappings in $\bar{R}^n$.
Keywords: Möbius mapping, quasimöbius mapping, (power) quasimöbius mapping, quasisymmetric mapping, stability theorem.
Mots-clés : ptolemaic space
@article{SEMR_2018_15_a123,
     author = {V. V. Aseev},
     title = {The coefficient of quasim\"obiusness in {Ptolemaic} spaces},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {246--257},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a123/}
}
TY  - JOUR
AU  - V. V. Aseev
TI  - The coefficient of quasim\"obiusness in Ptolemaic spaces
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 246
EP  - 257
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a123/
LA  - en
ID  - SEMR_2018_15_a123
ER  - 
%0 Journal Article
%A V. V. Aseev
%T The coefficient of quasim\"obiusness in Ptolemaic spaces
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 246-257
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a123/
%G en
%F SEMR_2018_15_a123
V. V. Aseev. The coefficient of quasim\"obiusness in Ptolemaic spaces. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 246-257. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a123/

[1] M.L. Blumenthal, Theory and Applications of Distance Geometry, Clarendod Press, Oxford, 1953 | MR

[2] J. Väisälä, “Quasimöbius maps”, J. Anal. Math., 44 (1984/85), 218–234 | DOI | MR

[3] P. Tukia, J. Väisälä, “Quasisymmetric embeddings of metric spaces”, Ann. Acad. Sci. Fenn. Ser. AI Math., 5:1 (1980), 97–114 | DOI | MR

[4] D.A. Trotsenko, J. Väisälä, “Upper sets and quasisymmetric maps”, Ann. Acad. Sci. Fenn. Ser. AI Math., 24:2 (1999), 465–488 | MR

[5] V.V. Aseev, A.V. Sychev, A.V. Tetenov, “Möbius-invariant metrics and generalized angles in ptolemeic spaces”, Sib. Math. J., 46:2 (2005), 189–204 | DOI | MR

[6] F.W. Gehring, J. Väisälä, “The coefficients of quasiconformality of domains in space”, Acta Math., 114:1–2 (1965), 1–70 | DOI | MR

[7] P. Tukia, J. Väisälä, “Extension of embeddings close to isometries or similarities”, Ann. Acad. Sci. Fenn. Ser. AI Math., 9 (1984), 153–175 | DOI | MR

[8] J. Partanen, “Invariance theorems for the bilipschitz and quasisymmetric extension properties”, Ann. Acad. Sci. Fenn. Ser. AI Math. Dissert., 80 (1991), 1–40 | MR

[9] P. Alestalo, D.A. Trotsenko, “On mappings that are close to a similarity”, Math. Rep., Buchar., 15(65):4 (2013), 313–318 | MR