Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a121, author = {A. K. B. Chand and K. M. Reddy}, title = {Constrained fractal interpolation functions with variable scaling}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {60--73}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a121/} }
TY - JOUR AU - A. K. B. Chand AU - K. M. Reddy TI - Constrained fractal interpolation functions with variable scaling JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2018 SP - 60 EP - 73 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a121/ LA - en ID - SEMR_2018_15_a121 ER -
A. K. B. Chand; K. M. Reddy. Constrained fractal interpolation functions with variable scaling. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 60-73. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a121/
[1] Barnsley M. F., “Fractal functions and interpolation”, Constr. Approx., 2:4 (1986), 303–329 | MR | Zbl
[2] Barnsley M. F., Fractals Everywhere, Academic Press, Orlando, Florida, 1988 | MR | Zbl
[3] Barnsley M. F., Harrington A. N., “The calculus of fractal interpolation functions”, J. Approx. Theory, 57:1 (1989), 14–34 | MR | Zbl
[4] Chand A. K. B., Kapoor G. P., “Generalized cubic spline fractal interpolation functions”, SIAM J. Numer. Anal., 44:2 (2006), 655–676 | MR | Zbl
[5] Brodlie K. W., Butt S., “Preserving convexity using piecewise cubic interpolation”, Computers and Graphics, 15:1 (1991), 15–23
[6] Chand A. K. B., Vijender N., “Monotonicity preserving rational quadratic fractal interpolation functions”, Adv. Num. Anal., 2014, 504825 | MR | Zbl
[7] Chand A. K. B., Vijender N., Navascués M. A., “Shape preservation of scientific data through rational fractal splines”, Calcolo, 51:2 (2014), 329–362 | MR | Zbl
[8] Chand A. K. B., Viswanathan P., “A constructive approach to cubic Hermite fractal Interpolation function and its constrained aspects”, BIT Numer. Math., 53:4 (2013), 841–865 | MR | Zbl
[9] Chand A. K. B., Viswanathan P., Reddy K. M., “Towards a more general type of univariate constrained interpolation with fractal splines”, Fractals, 23:4 (2015), 1550040 | MR | Zbl
[10] Delbourgo R., Gregory J. A., “$C^2$-rational quadratic spline interpolation to monotonic data”, IMA J. Numer. Anal., 3:2 (1983), 141–152 | MR | Zbl
[11] Delbourgo R., Gregory J. A., “Shape preserving piecewise rational interpolation”, SIAM J. Sci. Stat. Comp., 6:4 (1985), 967–976 | MR | Zbl
[12] Duan Q., Xu G., Liu A., Wang X., Cheng F., “Constrained interpolation using rational Cubic spline with linear denominators”, Korean J. Comput. Appl. Math., 6 (1999), 203–215 | MR | Zbl
[13] Farin G., Curves and Surfaces for Computer Aided Geometric Design: A Practical Guide, Computer Science and Scientific Computing, Academic Press, San Diego, Calif, USA, 1990 | MR | Zbl
[14] Fisher Y., Fractal Image Compression, Springer, New York, NY, USA, 1995 | MR
[15] Han X., “Convexity-preserving piecewise rational quartic interpolation”, SIAM. J. Numer. Anal., 46:2 (2008), 920–929 | MR | Zbl
[16] Hutchinson J. E., “Fractals and self similarity”, Indiana Univ. Math. J., 30 (1981), 713–747 | MR | Zbl
[17] Mandelbrot B., The Fractal Geometry of Nature, Freeman, San Francisco, 1982 | MR | Zbl
[18] Navascués M. A., Chand A. K. B., “Fundamental sets of fractal functions”, Acta Applicandae Mathematicae, 100:3 (2008), 247–261 | MR | Zbl
[19] Navascués M. A., “Fractal polynomial interpolation”, Z. Anal. Anwend., 25:2 (2005), 401–418 | MR
[20] Navascués M. A, Sebasstián M. V., “Smooth fractal interpolation”, J. Inequal. Appl., 2006, 78734, 20 pp. | MR | Zbl
[21] Sarfraz M., Al-Mulhem M., Ashraf F., “Preserving monotonic shape of the data using piecewise rational cubic functions”, Comput. Graph., 21:1 (1997), 5–14 | MR
[22] Schimdt J. W., Heß W., “Positivity of cubic polynomials on intervals and positive spline interpolation”, BIT Numer. Math., 28:2 (1988), 340–352 | MR
[23] Schumaker L. L., “On shape preserving quadratic spline interpolation”, SIAM J. Numer. Anal., 20 (1983), 854–864 | MR | Zbl
[24] Tian M., “Monotonicity preserving piecewise rational cubic interpolation”, Int. J. Math. Anal., 5 (2011), 99–104 | MR | Zbl
[25] Viswanathan P., Navascués M. A., Chand A. K. B., “Associate fractal functions in $\mathcal{L}^P$-spaces and in one-sided uniform approximation”, J. Math. Anal. Appl., 433 (2016), 862–876 | MR | Zbl
[26] Viswanathan P., Chand A. K. B., “$\alpha$-fractal rational splines for constrained Interpolation”, Electron. Trans. Numer. Anal., 41 (2014), 420–442 | MR | Zbl
[27] Wang H. Y., Fan Z. L., “Analytical characteristics of fractal interpolation functions with function vertical scaling factors”, Acta Math. Sinica, 54:1 (2011), 147–158 (in Chinese) | MR | Zbl
[28] Wang H. Y., Shan Yu. J., “Fractal interpolation functions with variable parameters and their analytical properties”, J. Approx. Theory, 175 (2013), 1–18 | MR | Zbl