Constrained fractal interpolation functions with variable scaling
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 60-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

Fractal interpolant function (FIF) constructed through iterated function systems is more general than classical spline interpolant. In this paper, we introduce a family of rational cubic splines with variable scaling, where the numerators and denominators of rational function are cubic and linear polynomial respectively. FIFs with variable scaling offer more flexibility in fitting and approximation of many complicated phenomena than that of in FIF with constant scaling. The convergence result of the proposed rational cubic interpolant to data generating function in $\mathcal{C}^1$ is proven. When interpolation data is constrained by piecewise curves, we derive sufficient condition on the parameter of rational FIF so that it lies between them.
Keywords: fractals, rational splines, constrained interpolation, rational fractal interpolation function.
@article{SEMR_2018_15_a121,
     author = {A. K. B. Chand and K. M. Reddy},
     title = {Constrained fractal interpolation functions with variable scaling},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {60--73},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a121/}
}
TY  - JOUR
AU  - A. K. B. Chand
AU  - K. M. Reddy
TI  - Constrained fractal interpolation functions with variable scaling
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 60
EP  - 73
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a121/
LA  - en
ID  - SEMR_2018_15_a121
ER  - 
%0 Journal Article
%A A. K. B. Chand
%A K. M. Reddy
%T Constrained fractal interpolation functions with variable scaling
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 60-73
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a121/
%G en
%F SEMR_2018_15_a121
A. K. B. Chand; K. M. Reddy. Constrained fractal interpolation functions with variable scaling. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 60-73. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a121/

[1] Barnsley M. F., “Fractal functions and interpolation”, Constr. Approx., 2:4 (1986), 303–329 | MR | Zbl

[2] Barnsley M. F., Fractals Everywhere, Academic Press, Orlando, Florida, 1988 | MR | Zbl

[3] Barnsley M. F., Harrington A. N., “The calculus of fractal interpolation functions”, J. Approx. Theory, 57:1 (1989), 14–34 | MR | Zbl

[4] Chand A. K. B., Kapoor G. P., “Generalized cubic spline fractal interpolation functions”, SIAM J. Numer. Anal., 44:2 (2006), 655–676 | MR | Zbl

[5] Brodlie K. W., Butt S., “Preserving convexity using piecewise cubic interpolation”, Computers and Graphics, 15:1 (1991), 15–23

[6] Chand A. K. B., Vijender N., “Monotonicity preserving rational quadratic fractal interpolation functions”, Adv. Num. Anal., 2014, 504825 | MR | Zbl

[7] Chand A. K. B., Vijender N., Navascués M. A., “Shape preservation of scientific data through rational fractal splines”, Calcolo, 51:2 (2014), 329–362 | MR | Zbl

[8] Chand A. K. B., Viswanathan P., “A constructive approach to cubic Hermite fractal Interpolation function and its constrained aspects”, BIT Numer. Math., 53:4 (2013), 841–865 | MR | Zbl

[9] Chand A. K. B., Viswanathan P., Reddy K. M., “Towards a more general type of univariate constrained interpolation with fractal splines”, Fractals, 23:4 (2015), 1550040 | MR | Zbl

[10] Delbourgo R., Gregory J. A., “$C^2$-rational quadratic spline interpolation to monotonic data”, IMA J. Numer. Anal., 3:2 (1983), 141–152 | MR | Zbl

[11] Delbourgo R., Gregory J. A., “Shape preserving piecewise rational interpolation”, SIAM J. Sci. Stat. Comp., 6:4 (1985), 967–976 | MR | Zbl

[12] Duan Q., Xu G., Liu A., Wang X., Cheng F., “Constrained interpolation using rational Cubic spline with linear denominators”, Korean J. Comput. Appl. Math., 6 (1999), 203–215 | MR | Zbl

[13] Farin G., Curves and Surfaces for Computer Aided Geometric Design: A Practical Guide, Computer Science and Scientific Computing, Academic Press, San Diego, Calif, USA, 1990 | MR | Zbl

[14] Fisher Y., Fractal Image Compression, Springer, New York, NY, USA, 1995 | MR

[15] Han X., “Convexity-preserving piecewise rational quartic interpolation”, SIAM. J. Numer. Anal., 46:2 (2008), 920–929 | MR | Zbl

[16] Hutchinson J. E., “Fractals and self similarity”, Indiana Univ. Math. J., 30 (1981), 713–747 | MR | Zbl

[17] Mandelbrot B., The Fractal Geometry of Nature, Freeman, San Francisco, 1982 | MR | Zbl

[18] Navascués M. A., Chand A. K. B., “Fundamental sets of fractal functions”, Acta Applicandae Mathematicae, 100:3 (2008), 247–261 | MR | Zbl

[19] Navascués M. A., “Fractal polynomial interpolation”, Z. Anal. Anwend., 25:2 (2005), 401–418 | MR

[20] Navascués M. A, Sebasstián M. V., “Smooth fractal interpolation”, J. Inequal. Appl., 2006, 78734, 20 pp. | MR | Zbl

[21] Sarfraz M., Al-Mulhem M., Ashraf F., “Preserving monotonic shape of the data using piecewise rational cubic functions”, Comput. Graph., 21:1 (1997), 5–14 | MR

[22] Schimdt J. W., Heß W., “Positivity of cubic polynomials on intervals and positive spline interpolation”, BIT Numer. Math., 28:2 (1988), 340–352 | MR

[23] Schumaker L. L., “On shape preserving quadratic spline interpolation”, SIAM J. Numer. Anal., 20 (1983), 854–864 | MR | Zbl

[24] Tian M., “Monotonicity preserving piecewise rational cubic interpolation”, Int. J. Math. Anal., 5 (2011), 99–104 | MR | Zbl

[25] Viswanathan P., Navascués M. A., Chand A. K. B., “Associate fractal functions in $\mathcal{L}^P$-spaces and in one-sided uniform approximation”, J. Math. Anal. Appl., 433 (2016), 862–876 | MR | Zbl

[26] Viswanathan P., Chand A. K. B., “$\alpha$-fractal rational splines for constrained Interpolation”, Electron. Trans. Numer. Anal., 41 (2014), 420–442 | MR | Zbl

[27] Wang H. Y., Fan Z. L., “Analytical characteristics of fractal interpolation functions with function vertical scaling factors”, Acta Math. Sinica, 54:1 (2011), 147–158 (in Chinese) | MR | Zbl

[28] Wang H. Y., Shan Yu. J., “Fractal interpolation functions with variable parameters and their analytical properties”, J. Approx. Theory, 175 (2013), 1–18 | MR | Zbl