Temporal multi-valued logic with lost worlds in the past
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 436-449.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study many–valued temporal multi–agent logics based on non-transitive models. The semantical basis, i. e., relational models, are used for modelling of computational processes and analysis of databases with incomplete information, for instance, with information forgotten in the past. In the situation we consider, the agents' accessibility relations may have lacunas: agents may have no access to some potentially known and stored information. Yet innovative point is that in the relational models we consider various valuations $V_i$ for agents' knowledge and a global valuation based on these valuations. Besides, agents' logical operations inside formulas may be nested, as a consequence they may interfere; that is, we consider not autonomous but cooperating agents. Satisfiability and decidability issues are discussed. We find algorithms solving satisfiability problem and hence we obtain the decidability of the decidability problem. Open problems are discussed.
Keywords: many–valued logic, multi–agent logic, temporal logic, computability, satisfiability, decidability, deciding algorithms, non–transitive time.
Mots-clés : information
@article{SEMR_2018_15_a12,
     author = {V. V. Rybakov},
     title = {Temporal multi-valued logic with lost worlds in the past},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {436--449},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a12/}
}
TY  - JOUR
AU  - V. V. Rybakov
TI  - Temporal multi-valued logic with lost worlds in the past
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 436
EP  - 449
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a12/
LA  - en
ID  - SEMR_2018_15_a12
ER  - 
%0 Journal Article
%A V. V. Rybakov
%T Temporal multi-valued logic with lost worlds in the past
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 436-449
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a12/
%G en
%F SEMR_2018_15_a12
V. V. Rybakov. Temporal multi-valued logic with lost worlds in the past. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 436-449. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a12/

[1] F. Baader, M. Bienvenu, C. Lutz, F. Wolter, “Query and Predicate Emptiness in Ontology-Based Data Access”, J. Artif. Intell. Res. (JAIR), 56 (2016), 1–59 | MR | Zbl

[2] S. Babenyshev, V. Rybakov, “Linear Temporal Logic LTL: Basis for Admissible Rules”, Journal of Logic and Computation, 21:2 (2011), 157–177 | DOI | MR | Zbl

[3] F. Belardinelli, A. Lomuscio, “Interactions between Knowledge and Time in a First-Order Logic for Multi-Agent Systems: Completeness Results”, Journal of Artificial Intelligence Research, 45 (2012), 1–45 | MR | Zbl

[4] P. Balbiani, D. Vakarelov, “A Modal Logic for Indiscernibility and Complementarity in Information Systems”, Fundam. Inform., 50:3–4 (2002), 243–263 | MR | Zbl

[5] G. Bruns, P. Godefroid, “Model Checking with Multi-valued Logics”, Automata, Languages and Programming, Lecture Notes in Computer Science, 3142, 2004, 281–293 | DOI | MR | Zbl

[6] M. Fitting, Many–Valued Modal Logics, PDF, preprint, Dept. Mathematics and Computer Science Lehman College (CUNY), Bronx, NY 10468, USA, 2004 | MR

[7] M. Fitting, Many-Valued Modal Logics II, preprint, Dept. Mathematics and Computer Science Lehman College (CUNY), Bronx, NY 10468, USA, 2004 | MR

[8] D.M. Gabbay, I.M. Hodkinson, M.A. Reynolds, Temporal Logic, v. 1, Mathematical Foundations and Computational Aspects, Clarendon Press, Oxford, 1994 | MR | Zbl

[9] D.M. Gabbay, I.M. Hodkinson, “An axiomatisation of the temporal logic with Until and Since over the real numbers”, Journal of Logic and Computation, 1:2 (1990), 229–260 | DOI | MR | Zbl

[10] D. Gabbay, I. Hodkinson, “Temporal Logic in Context of Databases”, Logic and Reality, Essays on the legacy of Arthur Prior, ed. J. Copeland, Oxford University Press, 1995 | MR

[11] A. Lomuscio, J. Michaliszyn, “An Epistemic Halpern–Shoham Logic”, Proceedings of the 23rd International Joint Conference on Artificial Intelligence, IJCAI 13, AAAI Press, Beijing, China, 2013, 1010–1016

[12] B. Konev, C. Lutz, D. Walther, F. Wolter, “Model-theoretic inseparability and modularity of description logic ontologies”, Artificial Intelligence, 203 (2013), 66–103 | DOI | MR | Zbl

[13] D. McLean, V. Rybakov, “Multi-Agent Temporary Logic $TS4^ U_ {K_n}$ Based at Non-linear Time and Imitating Uncertainty via Agents' Interaction”, Artificial Intelligence and Soft Computing, Conference Proceedings, Springer, 2013, 375–384 | DOI | MR

[14] V.V. Rybakov, “Refined common knowledge logics or logics of common information”, Archive for mathematical Logic, 42:2 (2003), 179–200 | DOI | MR | Zbl

[15] V.V. Rybakov, “Logical Consecutions in Discrete Linear Temporal Logic”, J. of Symbolic Logic, 70:4 (2005), 1137–1149 | DOI | MR | Zbl

[16] V.V. Rybakov, “Logic of knowledge and discovery via interacting agents. Decision algorithm for true and satisfiable statements”, Information Sciences, 179:11 (2009), 1608–1614 | DOI | MR | Zbl

[17] V.V. Rybakov, “Linear Temporal Logic $LTL_{K_n}$ extended by Multi-Agent Logic $K_n$ with Interacting Agents”, Journal of logic and Computation, 19:6 (2009), 989–1017 | DOI | MR | Zbl

[18] V. Rybakov, S. Babenyshev, “Multi–agent logic with distances based on linear temporal frames”, Artificial Intelligence and Soft Computing, Conference Proceedings, Springer, 2010, 337–344

[19] V.V. Rybakov, “Chance discovery and unification in linear modal logic”, Knowledge-Based and Intelligent Information and Engineering Systems, KES 2011, LNCS, 6882, 2011, 478–485

[20] V.V. Rybakov, “Linear temporal logic with until and next, logical consecutions”, Ann. Pure Appl. Logic, 155:1 (2008), 32–45 | DOI | MR | Zbl

[21] V.V. Rybakov, “Logical Analysis for Chance Discovery in Multi-Agents' Environment”, KES 2012, Conference Proceedings, Springer, 1593–1601

[22] V.V. Rybakov, “Non-transitive linear temporal logic and logical knowledge operations”, J. of Logic Computation, 2015 | DOI | MR

[23] D. Vakarelov, “A Modal Characterization of Indiscernibility and Similarity Relations in Pawlak's Information Systems”, Lecture Notes in Artificial Intelligence, Lecture Notes in Computer Science, 3641, 2005, 12–22 | DOI | Zbl

[24] M. Wooldridge, A. Lomuscio, “Multi–Agent VSK Logic”, Proceedings of the Seventh European Workshop on Logics in Artificial Intelligence, JELIAI-2000, Springer-Verlag, 2000 | MR | Zbl

[25] M. Wooldridge, “An Automata–theoretic approach to multiagent planning”, Proceedings of the First European Workshop on Multiagent Systems, EUMAS 2003, Oxford University, 2003

[26] M. Wooldridge, M.-P. Huget, M. Fisher, S. Parsons, “Model Checking Multi–Agent Systems: The MABLE Language and Its Applications”, International Journal on Artificial Intelligence Tools, 15:2 (2006), 195–225 | DOI | MR

[27] F. Wolter, “Automata for Ontologies”, Language and Automata, Theory and Applications, Lecture Notes in Computer Science, 9618, 2016, 57–60 | DOI | MR | Zbl