Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a119, author = {I. V. Tarasyuk and H. Maci\`a and V. Valero}, title = {Stochastic equivalence for performance analysis of concurrent systems in {dtsiPBC}}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1743--1812}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a119/} }
TY - JOUR AU - I. V. Tarasyuk AU - H. Macià AU - V. Valero TI - Stochastic equivalence for performance analysis of concurrent systems in dtsiPBC JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2018 SP - 1743 EP - 1812 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a119/ LA - en ID - SEMR_2018_15_a119 ER -
%0 Journal Article %A I. V. Tarasyuk %A H. Macià %A V. Valero %T Stochastic equivalence for performance analysis of concurrent systems in dtsiPBC %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2018 %P 1743-1812 %V 15 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a119/ %G en %F SEMR_2018_15_a119
I. V. Tarasyuk; H. Macià; V. Valero. Stochastic equivalence for performance analysis of concurrent systems in dtsiPBC. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1743-1812. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a119/
[1] W.M.P. van der Aalst, K.M. van Hee, H.A. Reijers, “Analysis of discrete-time stochastic Petri nets”, Statistica Neerlandica, 54:2 (2000), 237–255 https://www.win.tue.nl/h̃reijers/H.A. | DOI | MR | Zbl
[2] C. Autant, Ph. Schnoebelen, “Place bisimulations in Petri nets”, Lecture Notes in Computer Science, 616, 1992, 45–61 | DOI | MR
[3] C. Baier, “Polynomial time algorithms for testing probabilistic bisimulation and simulation”, Lecture Notes in Computer Science, 1102, 1996, 50–61 | DOI
[4] C. Baier, B. Engelen, M. Majster-Cederbaum, “Deciding bisimilarity and similarity for probabilistic processes”, Journal of Computer and System Sciences, 60:1 (2000), 187–231 | DOI | MR | Zbl
[5] G. Balbo, “Introduction to stochastic Petri nets”, Lecture Notes in Computer Science, 2090, 2001, 84–155 | DOI | Zbl
[6] G. Balbo, “Introduction to generalized stochastic Petri nets”, Lecture Notes in Computer Science, 4486, 2007, 83–131 | DOI | Zbl
[7] F. Bause, P.S. Kritzinger, Stochastic Petri nets: an introduction to the theory, Vieweg Verlag, Wiesbaden, 2002 http://ls4-www.cs.tu-dortmund.de/cms/de/home/bause/bause_kritzinger_spn_book_print.pdf | Zbl
[8] J.A. Bergstra, J.W. Klop, “Algebra of communicating processes with abstraction”, Theoretical Computer Science, 37:1 (1985), 77–121 | DOI | MR | Zbl
[9] M. Bernardo, Theory and application of extended Markovian process algebra, Ph.D. thesis, University of Bologna, Italy, 1999, 276 pp. http://www.sti.uniurb.it/bernardo/documents/phdthesis.pdf
[10] M. Bernardo, “A survey of Markovian behavioral equivalences”, Lecture Notes in Computer Science, 4486, 2007, 180–219 | DOI | Zbl
[11] M. Bernardo, “On the tradeoff between compositionality and exactness in weak bisimilarity for integrated-time Markovian process calculi”, Theoretical Computer Science, 563 (2015), 99–143 | DOI | MR | Zbl
[12] M. Bernardo, M. Bravetti, Reward based congruences: can we aggregate more?, Lecture Notes in Computer Science, 2165, 2001, 136–151 http://www.sti.uniurb.it/bernardo/documents/papmprobmiv2001.pdf | DOI | MR | Zbl
[13] M. Bernardo, L. Donatiello, R. Gorrieri, “A formal approach to the integration of performance aspects in the modeling and analysis of concurrent systems”, Information and Computation, 144:2 (1998), 83–154 | DOI | MR | Zbl
[14] M. Bernardo, R. Gorrieri, “A tutorial on EMPA: a theory of concurrent processes with nondeterminism, priorities, probabilities and time”, Theoretical Computer Science, 202:1–2 (1998), 1–54 | DOI | MR | Zbl
[15] E. Best, R. Devillers, J.G. Hall, “The box calculus: a new causal algebra with multi-label communication”, Lecture Notes in Computer Science, 609, 1992, 21–69 | DOI | MR
[16] E. Best, R. Devillers, M. Koutny, Petri net algebra, EATCS Monographs on Theoretical Computer Science, Springer, Berlin, 2001 | DOI | MR
[17] E. Best, M. Koutny, “A refined view of the box algebra”, Lecture Notes in Computer Science, 935, 1995, 1–20 | DOI | MR
[18] J.T. Bradley, “Semi-Markov PEPA: modelling with generally distributed actions”, International Journal of Simulation, 6:3–4 (2005), 43–51 http://pubs.doc.ic.ac.uk/semi-markov-pepa/semi-markov-pepa.pdf
[19] M. Bravetti, Specification and analysis of stochastic real-time systems, Ph.D. thesis, University of Bologna, Italy, 2002, 432 pp. http://www.cs.unibo.it/b̃ravetti/papers/phdthesis.ps.gz
[20] M. Bravetti, P.R. D'Argenio, “Tutte le algebre insieme: concepts, discussions and relations of stochastic process algebras with general distributions”, Lecture Notes in Computer Science, 2925, 2004, 44–88 | DOI | Zbl
[21] M. Bravetti, M. Bernardo, R. Gorrieri, “Towards performance evaluation with general distributions in process algebras”, Lecture Notes in Computer Science, 1466, 1998, 405–422 | DOI | MR
[22] E. Brinksma, H. Hermanns, “Process algebra and Markov chains”, Lecture Notes in Computer Science, 2090, 2001, 183–231 | DOI | MR | Zbl
[23] E. Brinksma, J.-P. Katoen, R. Langerak, D. Latella, “A stochastic causality-based process algebra”, The Computer Journal, 38:7 (1995), 552–565 | DOI
[24] G. Bucci, L. Sassoli, E. Vicario, “Correctness verification and performance analysis of real-time systems using stochastic preemptive time Petri nets”, IEEE Transactions on Software Engineering, 31:11 (2005), 913–927 | DOI
[25] P. Buchholz, “Markovian process algebra: composition and equivalence”, Proc. $2^{nd}$ Int. Workshop on Process Algebras and Performance Modelling (PAPM) 1994 (Regensberg , Erlangen, Germany, July 1994), Arbeitsberichte des IMMD, 27, no. 4, eds. U. Herzog, M. Rettelbach, 1994, 11–30
[26] P. Buchholz, “Exact and ordinary lumpability in finite Markov chains”, Journal of Applied Probability, 31:1 (1994), 59–75 | DOI | MR | Zbl
[27] P. Buchholz, “A notion of equivalence for stochastic Petri nets”, Lecture Notes in Computer Science, 935, 1995, 161–180 | DOI | MR
[28] P. Buchholz, “Iterative decomposition and aggregation of labeled GSPNs”, Lecture Notes in Computer Science, 1420, 1998, 226–245 | DOI
[29] P. Buchholz, I.V. Tarasyuk, “Net and algebraic approaches to probabilistic modeling”, Joint Novosibirsk Computing Center and Institute of Informatics Systems Bulletin, Series Computer Science, 15 (2001), 31–64 | Zbl
[30] S. Cattani, R. Segala, “Decision algorithms for probabilistic bisimulation”, Lecture Notes in Computer Science, 2421, 2002, 371–385 | DOI | MR | Zbl
[31] I. Christoff, “Testing equivalence and fully abstract models of probabilistic processes”, Lecture Notes in Computer Science, 458, 1990, 126–140 | DOI | MR
[32] C. Daws, “Symbolic and parametric model checking of discrete-time Markov chains”, Lecture Notes in Computer Science, 3407, 2005, 280–294 | DOI | MR | Zbl
[33] P. Degano, C. Priami, “Non-interleaving semantics for mobile processes”, Theoretical Computer Science, 216:1–2 (1999), 237–270 | DOI | MR | Zbl
[34] S. Derisavi, H. Hermanns, W.H. Sanders, “Optimal state-space lumping of Markov chains”, Information Processing Letters, 87:6 (2003), 309–315 | DOI | MR | Zbl
[35] Ch. Eisentraut, H. Hermanns, J. Schuster, A. Turrini, L. Zhang, “The quest for minimal quotients for probabilistic automata”, Lecture Notes in Computer Science, 7795, 2013, 16–31 | DOI | MR | Zbl
[36] J.M. Fourneau, “Collaboration of discrete-time Markov chains: tensor and product form”, Performance Evaluation, 67 (2010), 779–796 | DOI
[37] S. Gilmore, J. Hillston, L. Kloul, M. Ribaudo, “PEPA nets: a structured performance modelling formalism”, Performance Evaluation, 54 (2003), 79–104 | DOI
[38] R.J. van Glabbeek, S.A. Smolka, B. Steffen, “Reactive, generative, and stratified models of probabilistic processes”, Information and Computation, 121:1 (1995), 59–80 | DOI | MR | Zbl
[39] N. Götz, U. Herzog, M. Rettelbach, “Multiprocessor and distributed system design: the integration of functional specification and performance analysis using stochastic process algebras”, Lecture Notes in Computer Science, 729, 1993, 121–146 | DOI
[40] M.C. Guenther, N.J. Dingle, J.T. Bradley, W.J. Knottenbelt, “Passage-time computation and aggregation strategies for large semi-Markov processes”, Performance Evaluation, 68 (2011), 221–236 | DOI
[41] T. Han, J.-P. Katoen, A. Mereacre, “Approximate parameter synthesis for probabilistic time-bounded reachability”, Proc. $29^{th}$ IEEE Real-Time Systems Symposium (RTSS) 2008 (New York, USA), IEEE Computer Society Press, 2008, 173–182 | DOI
[42] B.R. Haverkort, “Markovian models for performance and dependability evaluation”, Lecture Notes in Computer Science, 2090, 2001, 38–83 | DOI | Zbl
[43] R.A. Hayden, J.T. Bradley, A. Clark, “Performance specification and evaluation with unified stochastic probes and fluid analysis”, IEEE Transactions on Software Engineering, 39:1 (2013), 97–118 | DOI
[44] H. Hermanns, M. Rettelbach, “Syntax, semantics, equivalences and axioms for MTIPP”, Proc. $2^{nd}$ Int. Workshop on Process Algebras and Performance Modelling (PAPM) 1994 (Regensberg, Erlangen, Germany, July 1994), Arbeitsberichte des IMMD, 27, no. 4, eds. U. Herzog, M. Rettelbach, 1994, 71–88 http://ftp.informatik.uni-erlangen.de/local/inf7/papers/Hermanns/syntax_semantics_equivalences_axioms_for_MTIPP.ps.gz
[45] J. Hillston, “The nature of synchronisation”, Proc. $2^{nd}$ Int. Workshop on Process Algebra and Performance Modelling (PAPM) 1994 (Regensberg, Erlangen, Germany, July 1994), Arbeitsberichte des IMMD, 27, no. 4, eds. U. Herzog, M. Rettelbach, 1994, 51–70 http://www.dcs.ed.ac.uk/pepa/synchronisation.pdf
[46] J. Hillston, A compositional approach to performance modelling, Cambridge University Press, Cambridge, 1996 http://www.dcs.ed.ac.uk/pepa/book.pdf | MR
[47] C.A.R. Hoare, Communicating sequential processes, Prentice-Hall, London, UK, 1985 http://www.usingcsp.com/cspbook.pdf | MR | Zbl
[48] A. Horváth, M., Paolieri, L. Ridi, E. Vicario, “Transient analysis of non-Markovian models using stochastic state classes”, Performance Evaluation, 69:7–8 (2012), 315–335 | DOI
[49] L. Jategaonkar, A.R. Meyer, “Deciding true concurrency equivalences on safe, finite nets”, Theoretical Computer Science, 154:1 (1996), 107–143 | DOI | MR | Zbl
[50] C.-C. Jou, S.A. Smolka, “Equivalences, congruences and complete axiomatizations for probabilistic processes”, Lecture Notes in Computer Science, 458, 1990, 367–383 | DOI | MR
[51] G. Kahn, “Natural semantics”, Proc. $4^{th}$ Annual Symposium on Theoretical Aspects of Computer Science (STACS) 1987, Springer, 1987, 22–39 | MR
[52] J.-P. Katoen, Quantitative and qualitative extensions of event structures, Ph.D. thesis, CTIT Ph.D.-thesis series, 96-09, Centre for Telematics and Information Technology, University of Twente, Enschede, The Netherlands, 1996
[53] J.-P. Katoen, P.R. D'Argenio, “General distributions in process algebra”, Lecture Notes in Computer Science, 2090, 2001, 375–429 | DOI | Zbl
[54] J.-P. Katoen, E. Brinksma, D. Latella, R. Langerak, “Stochastic simulation of event structures”, Proc. $4^{th}$ Int. Workshop on Process Algebra and Performance Modelling (PAPM) 1996, ed. M. Ribaudo, CLUT Press, Torino, Italy, 1996, 21–40 http://eprints.eemcs.utwente.nl/6487/01/263_KLLB96b.pdf
[55] V.G. Kulkarni, Modeling and analysis of stochastic systems, Texts in Statistical Science, 84, Second edition, Chapman and Hall / CRC Press, 2009 | MR
[56] R. Lanotte, A. Maggiolo-Schettini, A. Troina, “Parametric probabilistic transition systems for system design and analysis”, Formal Aspects of Computing, 19:1 (2007), 93–109 | DOI | Zbl
[57] K.G. Larsen, A. Skou, “Bisimulation through probabilistic testing”, Information and Computation, 94:1 (1991), 1–28 | DOI | MR | Zbl
[58] H. Macià, V. Valero, D.C. Cazorla, F. Cuartero, “Introducing the iteration in sPBC”, Lecture Notes in Computer Science, 3235, 2004, 292–308 | DOI | Zbl
[59] H. Macià, V. Valero, F. Cuartero, D. de Frutos, “A congruence relation for sPBC”, Formal Methods in System Design, 32:2 (2008), 85–128 | DOI | MR | Zbl
[60] H. Macià, V. Valero, F. Cuartero, M.C. Ruiz, “sPBC: a Markovian extension of Petri box calculus with immediate multiactions”, Fundamenta Informaticae, 87:3–4 (2008), 367–406 | MR | Zbl
[61] H. Macià, V. Valero, D. de Frutos, “sPBC: a Markovian extension of finite Petri box calculus”, Proc. $9^{th}$ IEEE Int. Workshop on Petri Nets and Performance Models (PNPM) 2001 (Aachen, Germany), IEEE Computer Society Press, 2001, 207–216 http://www.info-ab.uclm.es/retics/publications/2001/pnpm01.ps
[62] J. Markovski, P.R. D'Argenio, J.C.M. Baeten, E.P. de Vink, “Reconciling real and stochastic time: the need for probabilistic refinement”, Formal Aspects of Computing, 24:4–6 (2012), 497–518 | DOI | MR | Zbl
[63] J. Markovski, E.P. de Vink, “Extending timed process algebra with discrete stochastic time”, Lecture Notes of Computer Science, 5140, 2008, 268–283 | DOI | Zbl
[64] J. Markovski, E.P. de Vink, “Performance evaluation of distributed systems based on a discrete real- and stochastic-time process algebra”, Fundamenta Informaticae, 95:1 (2009), 157–186 | MR | Zbl
[65] M.A. Marsan, “Stochastic Petri nets: an elementary introduction”, Lecture Notes in Computer Science, 424, 1990, 1–29 | DOI | MR
[66] M.A. Marsan, G. Balbo, G. Conte, S. Donatelli, G. Franceschinis, Modelling with generalised stochastic Petri nets, Wiley Series in Parallel Computing, John Wiley and Sons, 1995 http://www.di.unito.it/g̃reatspn/GSPN-Wiley/ | Zbl
[67] R.A.J. Milner, Communication and concurrency, Prentice-Hall, Upper Saddle River, NJ, USA, 1989 | Zbl
[68] R.A.J. Milner, J.G. Parrow, D.J. Walker, “A calculus of mobile processes (I and II)”, Information and Computation, 100:1 (1992), 1–77 | DOI | MR | Zbl
[69] M.K. Molloy, On the integration of the throughput and delay measures in distributed processing models, Ph.D. thesis, Report No CSD-810-921, University of California, Los Angeles, USA, 1981, 108 pp.
[70] M.K. Molloy, “Discrete time stochastic Petri nets”, IEEE Transactions on Software Engineering, 11:4 (1985), 417–423 | DOI | MR | Zbl
[71] U. Montanari, M. Pistore, D. Yankelevich, “Efficient minimization up to location equivalence”, Lecture Notes in Computer Science, 1058, 1996, 265–279 | DOI
[72] T.N. Mudge, H.B. Al-Sadoun, “A semi-Markov model for the performance of multiple-bus systems”, IEEE Transactions on Computers, C-34:10 (1985), 934–942 | DOI
[73] R. Paige, R.E. Tarjan, “Three partition refinement algorithms”, SIAM Journal of Computing, 16:6 (1987), 973–989 | DOI | MR | Zbl
[74] G.D. Plotkin, A structural approach to operational semantics, Technical Report, No DAIMI FN-19, Computer Science Department, Aarhus University, Aarhus, Denmark, 1981
[75] C. Priami, “Stochastic $\pi$-calculus with general distributions”, Proc. $4^{th}$ Int. Workshop on Process Algebra and Performance Modelling (PAPM) 1996, ed. M. Ribaudo, CLUT Press, Torino, Italy, 1996, 41–57
[76] C. Priami, “Language-based performance prediction for distributed and mobile systems”, Information and Computation, 175:2 (2002), 119–145 | DOI | MR | Zbl
[77] M. Rettelbach, “Probabilistic branching in Markovian process algebras”, The Computer Journal, 38:7 (1995), 590–599 | DOI
[78] S.M. Ross, Stochastic processes, John Wiley and Sons Inc., New York, 1996 | MR | Zbl
[79] I.V. Tarasyuk, Discrete time stochastic Petri box calculus, Berichte aus dem Department für Informatik, 3/05, Carl von Ossietzky Universität Oldenburg, Germany, 2005 http://itar.iis.nsk.su/files/itar/pages/dtspbcib_cov.pdf
[80] I.V. Tarasyuk, “Iteration in discrete time stochastic Petri box calculus”, Bulletin of the Novosibirsk Computing Center, Series Computer Science, 24, IIS Special Issue (2006), 129–148 | Zbl
[81] I.V. Tarasyuk, “Stochastic Petri box calculus with discrete time”, Fundamenta Informaticae, 76:1–2 (2007), 189–218 | MR | Zbl
[82] I.V. Tarasyuk, “Equivalence relations for modular performance evaluation in dtsPBC”, Mathematical Structures in Computer Science, 24:1 (2014), e240103 | MR | Zbl
[83] I.V. Tarasyuk, H. Macià, V. Valero, “Discrete time stochastic Petri box calculus with immediate multiactions dtsiPBC” (London, UK, 2012), Electronic Notes in Theoretical Computer Science, 296, Proc. $6^{th}$ Int. Workshop on Practical Applications of Stochastic Modelling (PASM) 2012 and $11^{th}$ Int. Workshop on Parallel and Distributed Methods in Verification (PDMC) 2012 (2013), 229–252 | DOI
[84] I.V. Tarasyuk, H. Macià, V. Valero, “Performance analysis of concurrent systems in algebra dtsiPBC”, Programming and Computer Software, 40:5 (2014), 229–249 | DOI | MR | Zbl
[85] I.V. Tarasyuk, H. Macià, V. Valero, “Stochastic process reduction for performance evaluation in dtsiPBC”, Siberian Electronic Mathematical Reports, 12 (2015), 513–551 | MR | Zbl
[86] V. Valero, M.E. Cambronero, “Using unified modelling language to model the publish/subscribe paradigm in the context of timed Web services with distributed resources”, Mathematical and Computer Modelling of Dynamical Systems, 23:6 (2017), 570–594 | DOI
[87] R. Wimmer, S. Derisavi, H. Hermanns, “Symbolic partition refinement with automatic balancing of time and space”, Performance Evaluation, 67 (2010), 816–836 | DOI
[88] R. Zijal, G. Ciardo, G. Hommel, “Discrete deterministic and stochastic Petri nets”, Proc. $9^{th}$ ITG/GI Professional Meeting on Measuring, Modeling and Evaluation of Computer and Communication Systems (MMB) 1997 (Freiberg, Germany, 1997), v. 1, eds. K. Irmscher, Ch. Mittasch, K. Richter, VDE-Verlag, Berlin, Germany, 1997, 103–117 http://www.cs.ucr.edu/c̃iardo/pubs/1997MMB-DDSPN.pdf
[89] A. Zimmermann, J. Freiheit, G. Hommel, “Discrete time stochastic Petri nets for modeling and evaluation of real-time systems”, Proc. $9^{th}$ Int. Workshop on Parallel and Distributed Real Time Systems (WPDRTS) 2001 (San Francisco, USA), 2001, 282–286 http://pdv.cs.tu-berlin.de/ãzi/texte/WPDRTS01.pdf