Sensitivity of the pressure decline curve during the hydraulic fracturing to poroelastic effects
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1735-1742.

Voir la notice de l'article provenant de la source Math-Net.Ru

Computer simulators of hydraulic fracturing rely on known physical properties of the reservoir, in particular, the leak-off coefficient and the confining in situ stress. This information can be obtained from the solution of the inverse problem by analyzing of the pressure decline curve (PDC) in pump-in/shut-in tests. The goal of the present work is to demonstrate that poroelastic effect can have significant influence on the behavior of the PDC and, hence, to results of its analysis. For computer simulations we use the mathematical model of the hydraulic fracture in poroelastic medium developed in [6]. We investigate the dependence of the PDC on the closure stress and of the rock permeability. It is shown that classical methods for interpretation of PDC can lead to a significant error, in particular, in estimation of the minimal in situ confining stress.
Keywords: hydraulic fracture, mathematical modeling, pressure decline curve, poroelastic effects.
@article{SEMR_2018_15_a118,
     author = {E. V. Lgotina and A. N. Baykin and S. V. Golovin and A. M. Krivtsov},
     title = {Sensitivity of the pressure decline curve during the hydraulic fracturing to poroelastic effects},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1735--1742},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a118/}
}
TY  - JOUR
AU  - E. V. Lgotina
AU  - A. N. Baykin
AU  - S. V. Golovin
AU  - A. M. Krivtsov
TI  - Sensitivity of the pressure decline curve during the hydraulic fracturing to poroelastic effects
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 1735
EP  - 1742
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a118/
LA  - en
ID  - SEMR_2018_15_a118
ER  - 
%0 Journal Article
%A E. V. Lgotina
%A A. N. Baykin
%A S. V. Golovin
%A A. M. Krivtsov
%T Sensitivity of the pressure decline curve during the hydraulic fracturing to poroelastic effects
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 1735-1742
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a118/
%G en
%F SEMR_2018_15_a118
E. V. Lgotina; A. N. Baykin; S. V. Golovin; A. M. Krivtsov. Sensitivity of the pressure decline curve during the hydraulic fracturing to poroelastic effects. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1735-1742. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a118/

[1] A.N. Baykin, S.V. Golovin, “Modelling of hydraulic fracture propagation in inhomogeneous poroelastic medium”, J. Phys.: Conf. Ser., 722 (2016), 012003 | DOI

[2] A.N. Baykin, S.V. Golovin, “Application of the fully coupled planar 3d poroelastic hydraulic fracturing model to the analysis of the permeability contrast impact on fracture propagation”, Rock Mech. Rock Eng., 51:10 (2018), 3205–3217 | DOI

[3] T.J. Boone, P.R. Kry, S. Bharatha, J.M. Gronseth, “Poroelastic effects related to stress determ ination by micro-frac tests in permeable rock”, The 32nd U.S. Symposium on Rock Mechanics (USRMS) (10–12 July, Norman, Oklahoma), ed. J.-C. Roegiers, Norman, 1991, ARMA-91-025, 25–34

[4] R.D. Carter, “Appendix i. derivation of the general equation for estimating the extent of the fractured area”, Drilling and Production Practice, chapter Appendix I, eds. G. C. Howard, C. R. Fast, Amer. Petrol. Inst., N.Y., 1957, 267–268

[5] O. Coussy, Poromechanics, John Wiley Sons Ltd., Chichester, 2004

[6] S.V. Golovin, A.N. Baykin, “Influence of pore pressure on the development of a hydraulic fracture in poroelastic medium”, Int. J. Rock Mech. Min. Sci., 108 (2018), 198–208 | DOI

[7] Y. Kovalyshen, Fluid-driven fracture in poroelastic medium, PhD thesis, University of Minnesota, Minneapolis, 2010

[8] Kyoungsoo Park, Glaucio H. Paulino, “Computational implementation of the PPR potential-based cohesive model in ABAQUS: Educational perspective”, Engineering Fracture Mechanics, 93 (2012), 239–262 | DOI

[9] V.V. Shelukhin, V.A. Baikov, S.V. Golovin, A.Y. Davletbaev, V.N. Starovoitov, “Fractured water injection wells: Pressure transient analysis”, Int. J. Solids Struct., 51:11 (2014), 2116–2122 | DOI

[10] L. Vandamme, J. Roegiers, “Poroelasticity in hydraulic fracturing simulators”, JPT, 42:9 (1990), 1199–1203 | DOI