Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a118, author = {E. V. Lgotina and A. N. Baykin and S. V. Golovin and A. M. Krivtsov}, title = {Sensitivity of the pressure decline curve during the hydraulic fracturing to poroelastic effects}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1735--1742}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a118/} }
TY - JOUR AU - E. V. Lgotina AU - A. N. Baykin AU - S. V. Golovin AU - A. M. Krivtsov TI - Sensitivity of the pressure decline curve during the hydraulic fracturing to poroelastic effects JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2018 SP - 1735 EP - 1742 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a118/ LA - en ID - SEMR_2018_15_a118 ER -
%0 Journal Article %A E. V. Lgotina %A A. N. Baykin %A S. V. Golovin %A A. M. Krivtsov %T Sensitivity of the pressure decline curve during the hydraulic fracturing to poroelastic effects %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2018 %P 1735-1742 %V 15 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a118/ %G en %F SEMR_2018_15_a118
E. V. Lgotina; A. N. Baykin; S. V. Golovin; A. M. Krivtsov. Sensitivity of the pressure decline curve during the hydraulic fracturing to poroelastic effects. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1735-1742. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a118/
[1] A.N. Baykin, S.V. Golovin, “Modelling of hydraulic fracture propagation in inhomogeneous poroelastic medium”, J. Phys.: Conf. Ser., 722 (2016), 012003 | DOI
[2] A.N. Baykin, S.V. Golovin, “Application of the fully coupled planar 3d poroelastic hydraulic fracturing model to the analysis of the permeability contrast impact on fracture propagation”, Rock Mech. Rock Eng., 51:10 (2018), 3205–3217 | DOI
[3] T.J. Boone, P.R. Kry, S. Bharatha, J.M. Gronseth, “Poroelastic effects related to stress determ ination by micro-frac tests in permeable rock”, The 32nd U.S. Symposium on Rock Mechanics (USRMS) (10–12 July, Norman, Oklahoma), ed. J.-C. Roegiers, Norman, 1991, ARMA-91-025, 25–34
[4] R.D. Carter, “Appendix i. derivation of the general equation for estimating the extent of the fractured area”, Drilling and Production Practice, chapter Appendix I, eds. G. C. Howard, C. R. Fast, Amer. Petrol. Inst., N.Y., 1957, 267–268
[5] O. Coussy, Poromechanics, John Wiley Sons Ltd., Chichester, 2004
[6] S.V. Golovin, A.N. Baykin, “Influence of pore pressure on the development of a hydraulic fracture in poroelastic medium”, Int. J. Rock Mech. Min. Sci., 108 (2018), 198–208 | DOI
[7] Y. Kovalyshen, Fluid-driven fracture in poroelastic medium, PhD thesis, University of Minnesota, Minneapolis, 2010
[8] Kyoungsoo Park, Glaucio H. Paulino, “Computational implementation of the PPR potential-based cohesive model in ABAQUS: Educational perspective”, Engineering Fracture Mechanics, 93 (2012), 239–262 | DOI
[9] V.V. Shelukhin, V.A. Baikov, S.V. Golovin, A.Y. Davletbaev, V.N. Starovoitov, “Fractured water injection wells: Pressure transient analysis”, Int. J. Solids Struct., 51:11 (2014), 2116–2122 | DOI
[10] L. Vandamme, J. Roegiers, “Poroelasticity in hydraulic fracturing simulators”, JPT, 42:9 (1990), 1199–1203 | DOI