On convergence of the inverse iteration algorithm for modified Prony method
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1513-1529 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the nonlinear eigenvalue problem of modified Prony method under small perturbations the global convergence of first inverse iteration algorithm of M. Osborne (1970) is investigated.
Keywords: difference equations, parameter identification, modified Prony method, nonlinear eigenvalue problem, inverse iteration
Mots-clés : global convergence.
@article{SEMR_2018_15_a116,
     author = {A. A. Lomov},
     title = {On convergence of the inverse iteration algorithm for modified {Prony} method},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1513--1529},
     year = {2018},
     volume = {15},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a116/}
}
TY  - JOUR
AU  - A. A. Lomov
TI  - On convergence of the inverse iteration algorithm for modified Prony method
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 1513
EP  - 1529
VL  - 15
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a116/
LA  - ru
ID  - SEMR_2018_15_a116
ER  - 
%0 Journal Article
%A A. A. Lomov
%T On convergence of the inverse iteration algorithm for modified Prony method
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 1513-1529
%V 15
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a116/
%G ru
%F SEMR_2018_15_a116
A. A. Lomov. On convergence of the inverse iteration algorithm for modified Prony method. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1513-1529. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a116/

[1] de Prony, Baron Gaspard Riche, “Essai éxperimental et analytique: sur les lois de la dilatabilité de fluides élastique et sur celles de la force expansive de la vapeur de l'alkool, à différentes températures”, Journal de l'École Polytechnique, 1 (1795), Cahier 22, 24–76

[2] Pereyra V., Scherer G., “Exponential data fitting”, Exponential Data Fitting and Its Applications, Bentham Science Publishers, 2010, 1–26

[3] Householder A. S., On Prony's method of fitting exponential decay curves and multiple-hit survival cerves, Report ORNL-455, Oak Ridge National Lab., Oak Ridge, Tennessee, 1950 | MR

[4] Marple S. L., Digital spectral analysis with applications, Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1986 | MR

[5] Peter T., Generalized Prony Method, Dissertation zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades, Göttingen, 2013

[6] Roy R., Kailath T., “ESPRIT — Estimation of Signal Parameters via Rotational Invariance Techniques”, IEEE Transactions on Acoustics Speech and Signal Processing, 37:7 (1989), 984–995 | DOI

[7] Potts D., Tasche M., “Parameter estimation for nonincreasing exponential sums by Prony-like methods”, Linear Algebra and its Applications, 439:4 (2013), 1024–1039 | DOI | MR | Zbl

[8] Kostin V. I., “On extremum points of some function”, Upravlyaemye sistemy, Novosibirsk: Institute of Mathematics of SB AS USSR, 24, 1984, 35–42 (in Russian) | MR

[9] Petersson J., Holmström K., “A review of the parameter estimation problem of fitting positive exponential sums to empirical data”, Applied Mathematics and Computation, 126:1 (2002), 31–61 | DOI | MR | Zbl

[10] Osborne M. R., “A class of nonlinear regression problems”, Data Representation, University of Queensland Press, St. Lucia, 1970, 94–101 | Zbl

[11] Osborne M. R., “Some special nonlinear least squares problems”, SIAM J. Numer. Anal., 12:4 (1975), 571–592 | DOI | MR | Zbl

[12] Egorshin A. O., Budyanov V. P., “Smoothing of signals and estimation of dynamic parameters in automatic systems using a digital computer”, Avtometriya, 1 (1973), 78–82 (in Russian)

[13] Egorshin A. O., “Least squares method and the fast algorithms in variational problems of identification and filtration (VI method)”, Avtometriya, 1 (1988), 30–42 (in Russian)

[14] Osborne M. R., Smyth G. K., “A modified Prony algorithm for fitting functions defined by difference equations”, SIAM J. Sci. Statist. Comput., 12:2 (1991), 362–382 | DOI | MR | Zbl

[15] Lomov A. A., “On asymptotic optimality of the orthoregressional estimators”, Journal of Applied and Industrial Mathematics, 10:4 (2016), 511–519 | DOI | MR | Zbl

[16] Moor De B., “Structured total least squares and $L_{2}$ approximation problems”, Linear Algebra Appl., 188, 189 (1993), 163–207 | DOI | MR | Zbl

[17] Osborne M. R., Smyth G. K., “A Modified Prony Algorithm for Exponential Function Fitting”, SIAM Journal of Scientific Computing, 16:1 (1995), 119–138 | DOI | MR | Zbl

[18] Wilkinson J. H., The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965 | MR | Zbl