On convergence of the inverse iteration algorithm for modified Prony method
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1513-1529

Voir la notice de l'article provenant de la source Math-Net.Ru

In the nonlinear eigenvalue problem of modified Prony method under small perturbations the global convergence of first inverse iteration algorithm of M. Osborne (1970) is investigated.
Keywords: difference equations, parameter identification, modified Prony method, nonlinear eigenvalue problem, inverse iteration
Mots-clés : global convergence.
@article{SEMR_2018_15_a116,
     author = {A. A. Lomov},
     title = {On convergence of the inverse iteration algorithm for modified {Prony} method},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1513--1529},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a116/}
}
TY  - JOUR
AU  - A. A. Lomov
TI  - On convergence of the inverse iteration algorithm for modified Prony method
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 1513
EP  - 1529
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a116/
LA  - ru
ID  - SEMR_2018_15_a116
ER  - 
%0 Journal Article
%A A. A. Lomov
%T On convergence of the inverse iteration algorithm for modified Prony method
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 1513-1529
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a116/
%G ru
%F SEMR_2018_15_a116
A. A. Lomov. On convergence of the inverse iteration algorithm for modified Prony method. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1513-1529. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a116/