Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a116, author = {A. A. Lomov}, title = {On convergence of the inverse iteration algorithm for modified {Prony} method}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1513--1529}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a116/} }
TY - JOUR AU - A. A. Lomov TI - On convergence of the inverse iteration algorithm for modified Prony method JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2018 SP - 1513 EP - 1529 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a116/ LA - ru ID - SEMR_2018_15_a116 ER -
A. A. Lomov. On convergence of the inverse iteration algorithm for modified Prony method. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1513-1529. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a116/
[1] de Prony, Baron Gaspard Riche, “Essai éxperimental et analytique: sur les lois de la dilatabilité de fluides élastique et sur celles de la force expansive de la vapeur de l'alkool, à différentes températures”, Journal de l'École Polytechnique, 1 (1795), Cahier 22, 24–76
[2] Pereyra V., Scherer G., “Exponential data fitting”, Exponential Data Fitting and Its Applications, Bentham Science Publishers, 2010, 1–26
[3] Householder A. S., On Prony's method of fitting exponential decay curves and multiple-hit survival cerves, Report ORNL-455, Oak Ridge National Lab., Oak Ridge, Tennessee, 1950 | MR
[4] Marple S. L., Digital spectral analysis with applications, Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1986 | MR
[5] Peter T., Generalized Prony Method, Dissertation zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades, Göttingen, 2013
[6] Roy R., Kailath T., “ESPRIT — Estimation of Signal Parameters via Rotational Invariance Techniques”, IEEE Transactions on Acoustics Speech and Signal Processing, 37:7 (1989), 984–995 | DOI
[7] Potts D., Tasche M., “Parameter estimation for nonincreasing exponential sums by Prony-like methods”, Linear Algebra and its Applications, 439:4 (2013), 1024–1039 | DOI | MR | Zbl
[8] Kostin V. I., “On extremum points of some function”, Upravlyaemye sistemy, Novosibirsk: Institute of Mathematics of SB AS USSR, 24, 1984, 35–42 (in Russian) | MR
[9] Petersson J., Holmström K., “A review of the parameter estimation problem of fitting positive exponential sums to empirical data”, Applied Mathematics and Computation, 126:1 (2002), 31–61 | DOI | MR | Zbl
[10] Osborne M. R., “A class of nonlinear regression problems”, Data Representation, University of Queensland Press, St. Lucia, 1970, 94–101 | Zbl
[11] Osborne M. R., “Some special nonlinear least squares problems”, SIAM J. Numer. Anal., 12:4 (1975), 571–592 | DOI | MR | Zbl
[12] Egorshin A. O., Budyanov V. P., “Smoothing of signals and estimation of dynamic parameters in automatic systems using a digital computer”, Avtometriya, 1 (1973), 78–82 (in Russian)
[13] Egorshin A. O., “Least squares method and the fast algorithms in variational problems of identification and filtration (VI method)”, Avtometriya, 1 (1988), 30–42 (in Russian)
[14] Osborne M. R., Smyth G. K., “A modified Prony algorithm for fitting functions defined by difference equations”, SIAM J. Sci. Statist. Comput., 12:2 (1991), 362–382 | DOI | MR | Zbl
[15] Lomov A. A., “On asymptotic optimality of the orthoregressional estimators”, Journal of Applied and Industrial Mathematics, 10:4 (2016), 511–519 | DOI | MR | Zbl
[16] Moor De B., “Structured total least squares and $L_{2}$ approximation problems”, Linear Algebra Appl., 188, 189 (1993), 163–207 | DOI | MR | Zbl
[17] Osborne M. R., Smyth G. K., “A Modified Prony Algorithm for Exponential Function Fitting”, SIAM Journal of Scientific Computing, 16:1 (1995), 119–138 | DOI | MR | Zbl
[18] Wilkinson J. H., The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965 | MR | Zbl