Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a114, author = {O. V. Germider and V. N. Popov and A. A. Yushkanov}, title = {Mathematical simulation of heat and mass transfer processes in a rectangular channel depending on the accommodation coefficient of tangential momentum}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1011--1023}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a114/} }
TY - JOUR AU - O. V. Germider AU - V. N. Popov AU - A. A. Yushkanov TI - Mathematical simulation of heat and mass transfer processes in a rectangular channel depending on the accommodation coefficient of tangential momentum JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2018 SP - 1011 EP - 1023 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a114/ LA - ru ID - SEMR_2018_15_a114 ER -
%0 Journal Article %A O. V. Germider %A V. N. Popov %A A. A. Yushkanov %T Mathematical simulation of heat and mass transfer processes in a rectangular channel depending on the accommodation coefficient of tangential momentum %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2018 %P 1011-1023 %V 15 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a114/ %G ru %F SEMR_2018_15_a114
O. V. Germider; V. N. Popov; A. A. Yushkanov. Mathematical simulation of heat and mass transfer processes in a rectangular channel depending on the accommodation coefficient of tangential momentum. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1011-1023. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a114/
[1] H. Yamaguchi, T. Hanawa, O. Yamamoto, et al., “Experimental measurement on tangential momentum accommodation coefficient in a single microtube”, Microfluid Nanofluid, 11 (2011), 57–64 | DOI
[2] T. Ewart, P. Perrier, I.A. Graur, J.G. Meolans, “Tangential momentum accomodation in microtube”, Microfluid. Nanofluid, 3 (2007), 689–696 | DOI | Zbl
[3] A.V. Latyshev, A.A. Yushkanov, “A method of solving boundary value problems for kinetic equations”, Computational Mathematics and Mathematical Physics, 44:6 (2004), 1051–1061 | MR | Zbl
[4] I. Graur, M.T. Ho, “Rarefied gas flow through a long rectangular channel of variable cross section”, Vacuum, 101 (2014), 328–332 | DOI
[5] F.M. Sharipov, “Rarefied gas flow through a long rectangular channel”, J. Vac. Sci. Technol. A, 17:5 (1999), 3062–3066 | DOI
[6] O.V. Germider, V.N. Popov, “Mathematical modeling of heat transfer process in a rectangular channel in the problem of Poiseuille flow”, Siberian Electronic Mathematical Reports, 13 (2016), 1401–1409 | MR | Zbl
[7] V. A. Titarev, E. M. Shakhov, “Kinetic analysis of the isothermal flow in a long rectangular microchannel”, Computational Mathematics and Mathematical Physics, 50:7 (2010), 1221–1237 | DOI | MR | Zbl
[8] S. Pantazis, S. Varoutis, V. Hauer, C. Day, D. Valougeorgis, “Gas-surface scattering effect on vacuum gas flows through rectangular channels”, Vacuum, 85 (2011), 1161–1164 | DOI
[9] A.G. Lesskis, A.A. Yushkanov, Yu.I. Yalamov, “Magnetic dipole absorption of infrared radiation by a fine metal particle”, Surface, 11 (1987), 115–121
[10] C. Cercignani, Mathematical methods in the kinetic theory of gases, Plenum Press, New York, 1969 | MR
[11] M.N. Kogan, Rarefied gas dynamics. Kinetic theory, Nauka, M., 1967 | Zbl
[12] F.M. Sharipov, V.D. Seleznev, Motion of Rarefied Gases in Channels and Microchannels, UrO RAN, Yekaterinburg, 2008
[13] T. Hahn, “Cuba — a library for multidimensional numerical integration”, Computer Physics Communications, 168:2 (2005), 78–95 | DOI | MR | Zbl
[14] M. Hadj-Nacer, Tangential momentum accommodation coefficient in microchannels with different surface materials (measurements and simulations), These de doctorat, Universite d'aix Marseille, 2012