Mathematical simulation of heat and mass transfer processes in a rectangular channel depending on the accommodation coefficient of tangential momentum
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1011-1023.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article proposes method of solving the problem of heat and mass transfer in a long rectangular channel using Maxwell's mirror-diffusive boundary conditions. A rarefied gas flow trough cross section is studied on the basis of the Williams model kinetic equation. Expressions are obtained for heat and mass fluxes as linear functions of the temperature gradient supported in the channel. The profiles of the heat flux vector and the mass velocity of the gas in the channel are constructed depending on the accommodation coefficient. The specific gas mass flux and the heat flux through the channel cross section have been calculated. A numerical analysis of the results is carried out in the case when the tangential momentum accommodation coefficient is close to unity. It is shown that if one of the channel dimensions is much smaller than the other, the obtained results coincide with the analogous results for channels with infinite parallel walls. The results were compared with the analogous results found in the open press.
Keywords: The Williams equation, the model of mirror-diffuse reflection, analytical solutions, method of characteristics.
@article{SEMR_2018_15_a114,
     author = {O. V. Germider and V. N. Popov and A. A. Yushkanov},
     title = {Mathematical simulation of heat and mass transfer processes in a rectangular channel depending on the accommodation coefficient of tangential momentum},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1011--1023},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a114/}
}
TY  - JOUR
AU  - O. V. Germider
AU  - V. N. Popov
AU  - A. A. Yushkanov
TI  - Mathematical simulation of heat and mass transfer processes in a rectangular channel depending on the accommodation coefficient of tangential momentum
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 1011
EP  - 1023
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a114/
LA  - ru
ID  - SEMR_2018_15_a114
ER  - 
%0 Journal Article
%A O. V. Germider
%A V. N. Popov
%A A. A. Yushkanov
%T Mathematical simulation of heat and mass transfer processes in a rectangular channel depending on the accommodation coefficient of tangential momentum
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 1011-1023
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a114/
%G ru
%F SEMR_2018_15_a114
O. V. Germider; V. N. Popov; A. A. Yushkanov. Mathematical simulation of heat and mass transfer processes in a rectangular channel depending on the accommodation coefficient of tangential momentum. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1011-1023. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a114/

[1] H. Yamaguchi, T. Hanawa, O. Yamamoto, et al., “Experimental measurement on tangential momentum accommodation coefficient in a single microtube”, Microfluid Nanofluid, 11 (2011), 57–64 | DOI

[2] T. Ewart, P. Perrier, I.A. Graur, J.G. Meolans, “Tangential momentum accomodation in microtube”, Microfluid. Nanofluid, 3 (2007), 689–696 | DOI | Zbl

[3] A.V. Latyshev, A.A. Yushkanov, “A method of solving boundary value problems for kinetic equations”, Computational Mathematics and Mathematical Physics, 44:6 (2004), 1051–1061 | MR | Zbl

[4] I. Graur, M.T. Ho, “Rarefied gas flow through a long rectangular channel of variable cross section”, Vacuum, 101 (2014), 328–332 | DOI

[5] F.M. Sharipov, “Rarefied gas flow through a long rectangular channel”, J. Vac. Sci. Technol. A, 17:5 (1999), 3062–3066 | DOI

[6] O.V. Germider, V.N. Popov, “Mathematical modeling of heat transfer process in a rectangular channel in the problem of Poiseuille flow”, Siberian Electronic Mathematical Reports, 13 (2016), 1401–1409 | MR | Zbl

[7] V. A. Titarev, E. M. Shakhov, “Kinetic analysis of the isothermal flow in a long rectangular microchannel”, Computational Mathematics and Mathematical Physics, 50:7 (2010), 1221–1237 | DOI | MR | Zbl

[8] S. Pantazis, S. Varoutis, V. Hauer, C. Day, D. Valougeorgis, “Gas-surface scattering effect on vacuum gas flows through rectangular channels”, Vacuum, 85 (2011), 1161–1164 | DOI

[9] A.G. Lesskis, A.A. Yushkanov, Yu.I. Yalamov, “Magnetic dipole absorption of infrared radiation by a fine metal particle”, Surface, 11 (1987), 115–121

[10] C. Cercignani, Mathematical methods in the kinetic theory of gases, Plenum Press, New York, 1969 | MR

[11] M.N. Kogan, Rarefied gas dynamics. Kinetic theory, Nauka, M., 1967 | Zbl

[12] F.M. Sharipov, V.D. Seleznev, Motion of Rarefied Gases in Channels and Microchannels, UrO RAN, Yekaterinburg, 2008

[13] T. Hahn, “Cuba — a library for multidimensional numerical integration”, Computer Physics Communications, 168:2 (2005), 78–95 | DOI | MR | Zbl

[14] M. Hadj-Nacer, Tangential momentum accommodation coefficient in microchannels with different surface materials (measurements and simulations), These de doctorat, Universite d'aix Marseille, 2012