Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a113, author = {A. S. Anisimova and Yu. M. Laevsky}, title = {On reflected waves in the solutions of difference problems for the wave equation on non-uniform meshes}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {759--767}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a113/} }
TY - JOUR AU - A. S. Anisimova AU - Yu. M. Laevsky TI - On reflected waves in the solutions of difference problems for the wave equation on non-uniform meshes JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2018 SP - 759 EP - 767 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a113/ LA - en ID - SEMR_2018_15_a113 ER -
%0 Journal Article %A A. S. Anisimova %A Yu. M. Laevsky %T On reflected waves in the solutions of difference problems for the wave equation on non-uniform meshes %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2018 %P 759-767 %V 15 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a113/ %G en %F SEMR_2018_15_a113
A. S. Anisimova; Yu. M. Laevsky. On reflected waves in the solutions of difference problems for the wave equation on non-uniform meshes. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 759-767. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a113/
[1] G. Browning, H.-O. Kreiss, J. Oliger, “Mesh refinement”, Math. Comp., 27:121 (1973), 29–39 | DOI | MR | Zbl
[2] D.L. Brown, “A note on the numerical solution of the wave equation with piecewise smooth coefficients”, Math. Comp., 42:166 (1984), 369–391 | DOI | MR | Zbl
[3] T. Lin, J. Sochacki, R. Ewing, J. George, “Some grid refinement schemes for hyperbolic equations with piecewise constant coefficients”, Math. Comput., 56:193 (1991), 61–86 | DOI | MR | Zbl
[4] J. Piraux, B. Lombard, “A new interface method for hyperbolic problems with discontinuous coefficients: one-dimensional acoustic example”, J. Comp. Physics, 168 (2001), 227–248 | DOI | MR | Zbl
[5] R. Vichnevetsky, “Wave propagation analysis of difference schemes for hyperbolic equations: a review”, Intern. J. Numer. Methods in Fluids, 7 (1987), 409–452 | DOI | MR | Zbl
[6] J.–P. Bérenger, “A Huygens subgridding for the FDTD method”, IEEE Transactions on Antennas and Propagation, 54:12 (2006), 3797–3804 | DOI | MR | Zbl
[7] L.N. Trefethen, “Group velocity in finite difference schemes”, SIAM Review, 24:2 (1982), 113–136 | DOI | MR | Zbl
[8] I.S. Kim, W. J. R. Hoefer, “Domain-finite difference method using Maxwell’s curl equations”, IEEE Transactions on microwave theory and techniques, 38:6 (1990), 812–815 | DOI
[9] P.P. Matus, “A class of difference schemes on composite grids for non-steady-state problems in mathematical physics”, Differential Equations, 26:7 (1990), 911–922 | MR | Zbl
[10] R.E. Ewing, R.D. Lazarov, P.S. Vassilevski, “Finite difference schemes on grids with local refinement in time and space for parabolic problems I. Derivation, stability, and error analysis”, Computing, 45:3 (1990), 193–215 | DOI | MR | Zbl
[11] V.I. Drobyshevich, Yu.M. Laevsky, “An algorithm of solution of parabolic equations with different time-steps in subdomains”, Russ. J. Numer. Anal. Math. Modelling, 7:3 (1992), 205–220 | DOI | MR | Zbl
[12] Yu.M. Laevsky, P. V. Banushkina, “The compound explicit schemes”, Siberian J. of Numer. Mathematics, 3:2 (2000), 165–180 (in Russian) | Zbl
[13] P.V. Banushkina, Yu.M. Laevsky, “Multilevel explicit schemes and their stability”, Russ. J. Numer. Anal. Math. Modelling, 16:3 (2001), 215–233 | DOI | MR | Zbl
[14] F. Collino, T. Fouquet, P. Joly, “A conservative space-time mesh refinement method for the 1D wave equation. Part I: Construction”, Numer. Math., 95:2 (2003), 197–221 | DOI | MR | Zbl
[15] V. Kostin, V. Lisitsa, G. Reshetova, V. Tcheverda, “Local time–space mesh refinement for simulation of elastic wave propagation in multi-scale media”, J. Comp. Physics, 281 (2015), 669–689 | DOI | MR | Zbl
[16] A.A. Samarskii, The Theory of Difference Schemes, Marcel Dekker, Inc., New York, 2001 | MR | Zbl