On reflected waves in the solutions of difference problems for the wave equation on non-uniform meshes
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 759-767.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper discusses the problem of numerical reflected waves when using difference schemes on strongly nonuniform grids for solution to the wave equation. The relationship between the amplitude of the reflected wave and the order of approximation on the interface of the transition from a coarse grid to a fine grid is shown. A simple modification of the difference scheme on the interface is proposed, which increases the order of approximation, and, as a consequence, reduces the amplitude of the reflected wave.
Keywords: wave equation, reflected wave, difference scheme, nonuniform mesh, step jump, homogeneous scheme, compound scheme, computational experiment.
@article{SEMR_2018_15_a113,
     author = {A. S. Anisimova and Yu. M. Laevsky},
     title = {On reflected waves in the solutions of difference problems for the wave equation on non-uniform meshes},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {759--767},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a113/}
}
TY  - JOUR
AU  - A. S. Anisimova
AU  - Yu. M. Laevsky
TI  - On reflected waves in the solutions of difference problems for the wave equation on non-uniform meshes
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 759
EP  - 767
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a113/
LA  - en
ID  - SEMR_2018_15_a113
ER  - 
%0 Journal Article
%A A. S. Anisimova
%A Yu. M. Laevsky
%T On reflected waves in the solutions of difference problems for the wave equation on non-uniform meshes
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 759-767
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a113/
%G en
%F SEMR_2018_15_a113
A. S. Anisimova; Yu. M. Laevsky. On reflected waves in the solutions of difference problems for the wave equation on non-uniform meshes. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 759-767. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a113/

[1] G. Browning, H.-O. Kreiss, J. Oliger, “Mesh refinement”, Math. Comp., 27:121 (1973), 29–39 | DOI | MR | Zbl

[2] D.L. Brown, “A note on the numerical solution of the wave equation with piecewise smooth coefficients”, Math. Comp., 42:166 (1984), 369–391 | DOI | MR | Zbl

[3] T. Lin, J. Sochacki, R. Ewing, J. George, “Some grid refinement schemes for hyperbolic equations with piecewise constant coefficients”, Math. Comput., 56:193 (1991), 61–86 | DOI | MR | Zbl

[4] J. Piraux, B. Lombard, “A new interface method for hyperbolic problems with discontinuous coefficients: one-dimensional acoustic example”, J. Comp. Physics, 168 (2001), 227–248 | DOI | MR | Zbl

[5] R. Vichnevetsky, “Wave propagation analysis of difference schemes for hyperbolic equations: a review”, Intern. J. Numer. Methods in Fluids, 7 (1987), 409–452 | DOI | MR | Zbl

[6] J.–P. Bérenger, “A Huygens subgridding for the FDTD method”, IEEE Transactions on Antennas and Propagation, 54:12 (2006), 3797–3804 | DOI | MR | Zbl

[7] L.N. Trefethen, “Group velocity in finite difference schemes”, SIAM Review, 24:2 (1982), 113–136 | DOI | MR | Zbl

[8] I.S. Kim, W. J. R. Hoefer, “Domain-finite difference method using Maxwell’s curl equations”, IEEE Transactions on microwave theory and techniques, 38:6 (1990), 812–815 | DOI

[9] P.P. Matus, “A class of difference schemes on composite grids for non-steady-state problems in mathematical physics”, Differential Equations, 26:7 (1990), 911–922 | MR | Zbl

[10] R.E. Ewing, R.D. Lazarov, P.S. Vassilevski, “Finite difference schemes on grids with local refinement in time and space for parabolic problems I. Derivation, stability, and error analysis”, Computing, 45:3 (1990), 193–215 | DOI | MR | Zbl

[11] V.I. Drobyshevich, Yu.M. Laevsky, “An algorithm of solution of parabolic equations with different time-steps in subdomains”, Russ. J. Numer. Anal. Math. Modelling, 7:3 (1992), 205–220 | DOI | MR | Zbl

[12] Yu.M. Laevsky, P. V. Banushkina, “The compound explicit schemes”, Siberian J. of Numer. Mathematics, 3:2 (2000), 165–180 (in Russian) | Zbl

[13] P.V. Banushkina, Yu.M. Laevsky, “Multilevel explicit schemes and their stability”, Russ. J. Numer. Anal. Math. Modelling, 16:3 (2001), 215–233 | DOI | MR | Zbl

[14] F. Collino, T. Fouquet, P. Joly, “A conservative space-time mesh refinement method for the 1D wave equation. Part I: Construction”, Numer. Math., 95:2 (2003), 197–221 | DOI | MR | Zbl

[15] V. Kostin, V. Lisitsa, G. Reshetova, V. Tcheverda, “Local time–space mesh refinement for simulation of elastic wave propagation in multi-scale media”, J. Comp. Physics, 281 (2015), 669–689 | DOI | MR | Zbl

[16] A.A. Samarskii, The Theory of Difference Schemes, Marcel Dekker, Inc., New York, 2001 | MR | Zbl