Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a110, author = {M. A. Skvortsova}, title = {On estimates of solutions in a predator-prey model with two delays}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1697--1718}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a110/} }
M. A. Skvortsova. On estimates of solutions in a predator-prey model with two delays. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1697-1718. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a110/
[1] H. You, R. Yuan, “A stage-structured predator-prey model with two delays due to juvenile maturation”, Acta Mathematicae Applicatae Sinica, English Series, 2011, 1–20
[2] N.N. Krasovskii, Stability of Motion. Applications of Lyapunov's Second Method to Differential Systems and Equations with Delay, Stanford University Press, Stanford, 1963 | MR | Zbl
[3] G.V. Demidenko, I.I. Matveeva, “Asymptotic properties of solutions to delay differential equations”, Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya: Matematika, Mekhanika, Informatika, 5:3 (2005), 20–28 (in Russian) | Zbl
[4] G.V. Demidenko, I.I. Matveeva, “Stability of solutions to delay differential equations with periodic coefficients of linear terms”, Siberian Mathematical Journal, 48:5 (2007), 824–836 | DOI | MR | Zbl
[5] D.Ya. Khusainov, A.F. Ivanov, A.T. Kozhametov, “Convergence estimates for solutions of linear stationary systems of differential-difference equations with constant delay”, Differential Equations, 41:8 (2005), 1196–1200 | DOI | MR | Zbl
[6] S. Mondie, V.L. Kharitonov, “Exponential estimates for retarded time-delay systems: LMI approach”, IEEE Transactions on Automatic Control, 50:2 (2005), 268–273 | DOI | MR | Zbl
[7] M.A. Skvortsova, “Stability of solutions in the predator-prey model with delay”, Matematicheskie Zametki SVFU, 23:2 (2016), 108–120 (in Russian) | Zbl
[8] M.A. Skvortsova, “Estimates for solutions in a predator-prey model with delay”, Izvestiya Irkutskogo Gosudarstvennogo Universiteta. Seriya “Matematika”, 25 (2018), 109–125 (in Russian)
[9] Ph. Hartman, Ordinary Differential Equations, John Wiley Sons, New York–London–Sydney, 1964 | MR | Zbl