The classical solution of one overdetermined stationary system arising in two-velocity hydrodynamics
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1621-1629.

Voir la notice de l'article provenant de la source Math-Net.Ru

The classical solution of an overdetermined stationary system of second order equations arising in a two-fluid medium is considered. Using the theory of potential and the Green's function for a given system, the existence of the classical solution in the case of specifying the Dirichlet boundary conditions is shown. The influence of the kinetic parameters of the medium on the solution of the system in question has been shown.
Keywords: Two- velocity hydrodynamics, fundamental solution, potential of double layer, Green's function, the classical solution.
Mots-clés : viscous liquid
@article{SEMR_2018_15_a109,
     author = {M. V. Urev and Sh. Kh. Imomnazarov},
     title = {The classical solution of one overdetermined stationary system arising in two-velocity hydrodynamics},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1621--1629},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a109/}
}
TY  - JOUR
AU  - M. V. Urev
AU  - Sh. Kh. Imomnazarov
TI  - The classical solution of one overdetermined stationary system arising in two-velocity hydrodynamics
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 1621
EP  - 1629
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a109/
LA  - ru
ID  - SEMR_2018_15_a109
ER  - 
%0 Journal Article
%A M. V. Urev
%A Sh. Kh. Imomnazarov
%T The classical solution of one overdetermined stationary system arising in two-velocity hydrodynamics
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 1621-1629
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a109/
%G ru
%F SEMR_2018_15_a109
M. V. Urev; Sh. Kh. Imomnazarov. The classical solution of one overdetermined stationary system arising in two-velocity hydrodynamics. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1621-1629. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a109/

[1] R.I. Nigmatulin, Foundations of mechanics of heterogeneous media, Nauka, M., 1978 (in Russian) | MR

[2] R.I. Nigmatulin, Dynamics of multiphase media, v. 1, Nauka, M., 1987 (in Russian)

[3] S.L. Soo, Fluid dynamics of mulmiphase system, Mir, M., 1975 (in Russian)

[4] Kh.A. Rakhmatulin, “Basics of gas dynamics of interpenetrating motions of continuous media”, Applied mathematics and mechanics, 20:2 (1956), 184–-195 (in Russian) | MR | Zbl

[5] M. Ishii, “Thermo-fluid dynamic theory of two-phase flow”, NASA STI/Recon Technical Report A, 75 (1975), 29657 | Zbl

[6] M. Baer, J. Nunziato, “A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials”, International Journal of Multiphase Flow, 12:6 (1986), 861–-889 | DOI | Zbl

[7] E. Romenskiî, “Thermodynamics and hyperbolic systems of balance laws in continuum mechanics”, Godunov methods, 2001, 745–-761 | DOI | MR

[8] S. Godunov, E. Romenskiî, Elements of continuum mechanics and conservation laws, Scientific book, Novosibirsk, 1998 (in Russian) | MR | Zbl

[9] E. Romenskiî, E. Toro, “Compressible two-phase flows: two-pressure models and numerical methods”, Comput. Fluid Dyn. J., 13 (2004), 403–-416

[10] E. Romenskiî, A. Resnyansky, E. Toro, “Conservative hyperbolic model for compressible two-phase flow with different phase pressures and temperatures”, Quarterly of applied mathematics, 65:2 (2007), 259–-279 | DOI | MR | Zbl

[11] E. Romenskiî, D. Drikakis, E. Toro, “Conservative models and numerical methods for compressible two-phase flow”, Journal of Scientific Computing, 42:1 (2010), 68–-95 | DOI | MR | Zbl

[12] E. Romenskiî, “Hyperbolic systems of conservation laws for compressible multiphase flows based on thermodynamically compatible systems theory”, ICNAAM 2012: International Conference of Numerical Analysis and Applied Mathematics, Numerical Analysis and Applied Mathematics, 1479, AIP Publishing, 2012, 62–-65

[13] G. La Spina, M. de’Michieli Vitturi, “High-resolution finite volume central schemes for a compressible two-phase model”, SIAM Journal on Scientific Computing, 34:6 (2012), B861–-B880 | DOI | MR | Zbl

[14] D. Zeidan, “On a Further Work of Two-phase Mixture Conservation Laws”, ICNAAM 2011: International Conference on Numerical Analysis and Applied Mathematics, Numerical Analysis and Applied Mathematics, 1389, AIP Publishing, 2011, 163–-166

[15] V.N. Dorovsky, “Formation of dissipative structures in the process of irreversible momentum transfer of the lithosphere”, Geology and Geophysics, 6 (1987), 108–117 (in Russian)

[16] V.N. Dorovsky, Yu.V. Perepechko, “Theory of partial melting”, Geology and Geophysics, 9 (1989), 56–64 (in Russian)

[17] Kh.Kh. Imomnazarov, Sh.Kh. Imomnazarov, M.M. Mamatkulov, E.G. Chernykh, “The fundamental solution for the stationary equation of two-speed hydrodynamics with one pressure”, Siberian J. Industr. Math., 17:4 (2014), 60–66 (in Russian) | MR | Zbl

[18] Kh.Kh. Imomnazarov, P.V. Korobov, N.M. Zhabborov, “Conservation Laws for the two-velocity hydrodynamics equations with one pressure”, Bull. Of the Novosibirsk Computing Center, series: Mathematical Modeling in Geophysics, 16, Novosibirsk, 2013, 35–44

[19] N.M. Zhabborov, Kh.Kh. Imomnazarov, P.V. Korobov, “Three-dimensional vortex flows of two–velocity incompressible media in the case of constant volume saturation”, J. of Math. Sciences, 211:6 (2015), 760–-766 | DOI | MR

[20] Zh. Baishemirov, Jian-Gang Tang, Kh. Imomnazarov, M. Mamatqulov, “Solving the problem of two viscous incompressible fluid media in the case of constant phase saturations”, Open Eng., 6 (2016), 742–-745 | DOI

[21] A.E. Mamontov, D.A. Prokudin, “Solubility of unsteady equations of multi-component viscous compressible fluids”, Izvestiya Ross. Akad. Nauk, Ser. Math., 82:1 (2018), 140–-185 | MR | Zbl

[22] M.V. Urev, Kh.Kh. Imomnazarov, Jian-Gang Tang, “A boundary value problem for one overdetermined stationary system emerging in the two-velocity hydrodynamics”, Sib. Zh. Vychisl. Mat., 20:4 (2017), 425–437 | MR

[23] O.A. Ladyzhenskaya, Mathematical problems of viscous incompressible fluid dynamics, Nauka, M., 1970 (in Russian) | MR

[24] A.N. Tikhonov, A.A. Samarsky, Equations of mathematical physics, Nauka, M., 1972 (in Russian) | MR