Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a109, author = {M. V. Urev and Sh. Kh. Imomnazarov}, title = {The classical solution of one overdetermined stationary system arising in two-velocity hydrodynamics}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1621--1629}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a109/} }
TY - JOUR AU - M. V. Urev AU - Sh. Kh. Imomnazarov TI - The classical solution of one overdetermined stationary system arising in two-velocity hydrodynamics JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2018 SP - 1621 EP - 1629 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a109/ LA - ru ID - SEMR_2018_15_a109 ER -
%0 Journal Article %A M. V. Urev %A Sh. Kh. Imomnazarov %T The classical solution of one overdetermined stationary system arising in two-velocity hydrodynamics %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2018 %P 1621-1629 %V 15 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a109/ %G ru %F SEMR_2018_15_a109
M. V. Urev; Sh. Kh. Imomnazarov. The classical solution of one overdetermined stationary system arising in two-velocity hydrodynamics. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1621-1629. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a109/
[1] R.I. Nigmatulin, Foundations of mechanics of heterogeneous media, Nauka, M., 1978 (in Russian) | MR
[2] R.I. Nigmatulin, Dynamics of multiphase media, v. 1, Nauka, M., 1987 (in Russian)
[3] S.L. Soo, Fluid dynamics of mulmiphase system, Mir, M., 1975 (in Russian)
[4] Kh.A. Rakhmatulin, “Basics of gas dynamics of interpenetrating motions of continuous media”, Applied mathematics and mechanics, 20:2 (1956), 184–-195 (in Russian) | MR | Zbl
[5] M. Ishii, “Thermo-fluid dynamic theory of two-phase flow”, NASA STI/Recon Technical Report A, 75 (1975), 29657 | Zbl
[6] M. Baer, J. Nunziato, “A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials”, International Journal of Multiphase Flow, 12:6 (1986), 861–-889 | DOI | Zbl
[7] E. Romenskiî, “Thermodynamics and hyperbolic systems of balance laws in continuum mechanics”, Godunov methods, 2001, 745–-761 | DOI | MR
[8] S. Godunov, E. Romenskiî, Elements of continuum mechanics and conservation laws, Scientific book, Novosibirsk, 1998 (in Russian) | MR | Zbl
[9] E. Romenskiî, E. Toro, “Compressible two-phase flows: two-pressure models and numerical methods”, Comput. Fluid Dyn. J., 13 (2004), 403–-416
[10] E. Romenskiî, A. Resnyansky, E. Toro, “Conservative hyperbolic model for compressible two-phase flow with different phase pressures and temperatures”, Quarterly of applied mathematics, 65:2 (2007), 259–-279 | DOI | MR | Zbl
[11] E. Romenskiî, D. Drikakis, E. Toro, “Conservative models and numerical methods for compressible two-phase flow”, Journal of Scientific Computing, 42:1 (2010), 68–-95 | DOI | MR | Zbl
[12] E. Romenskiî, “Hyperbolic systems of conservation laws for compressible multiphase flows based on thermodynamically compatible systems theory”, ICNAAM 2012: International Conference of Numerical Analysis and Applied Mathematics, Numerical Analysis and Applied Mathematics, 1479, AIP Publishing, 2012, 62–-65
[13] G. La Spina, M. de’Michieli Vitturi, “High-resolution finite volume central schemes for a compressible two-phase model”, SIAM Journal on Scientific Computing, 34:6 (2012), B861–-B880 | DOI | MR | Zbl
[14] D. Zeidan, “On a Further Work of Two-phase Mixture Conservation Laws”, ICNAAM 2011: International Conference on Numerical Analysis and Applied Mathematics, Numerical Analysis and Applied Mathematics, 1389, AIP Publishing, 2011, 163–-166
[15] V.N. Dorovsky, “Formation of dissipative structures in the process of irreversible momentum transfer of the lithosphere”, Geology and Geophysics, 6 (1987), 108–117 (in Russian)
[16] V.N. Dorovsky, Yu.V. Perepechko, “Theory of partial melting”, Geology and Geophysics, 9 (1989), 56–64 (in Russian)
[17] Kh.Kh. Imomnazarov, Sh.Kh. Imomnazarov, M.M. Mamatkulov, E.G. Chernykh, “The fundamental solution for the stationary equation of two-speed hydrodynamics with one pressure”, Siberian J. Industr. Math., 17:4 (2014), 60–66 (in Russian) | MR | Zbl
[18] Kh.Kh. Imomnazarov, P.V. Korobov, N.M. Zhabborov, “Conservation Laws for the two-velocity hydrodynamics equations with one pressure”, Bull. Of the Novosibirsk Computing Center, series: Mathematical Modeling in Geophysics, 16, Novosibirsk, 2013, 35–44
[19] N.M. Zhabborov, Kh.Kh. Imomnazarov, P.V. Korobov, “Three-dimensional vortex flows of two–velocity incompressible media in the case of constant volume saturation”, J. of Math. Sciences, 211:6 (2015), 760–-766 | DOI | MR
[20] Zh. Baishemirov, Jian-Gang Tang, Kh. Imomnazarov, M. Mamatqulov, “Solving the problem of two viscous incompressible fluid media in the case of constant phase saturations”, Open Eng., 6 (2016), 742–-745 | DOI
[21] A.E. Mamontov, D.A. Prokudin, “Solubility of unsteady equations of multi-component viscous compressible fluids”, Izvestiya Ross. Akad. Nauk, Ser. Math., 82:1 (2018), 140–-185 | MR | Zbl
[22] M.V. Urev, Kh.Kh. Imomnazarov, Jian-Gang Tang, “A boundary value problem for one overdetermined stationary system emerging in the two-velocity hydrodynamics”, Sib. Zh. Vychisl. Mat., 20:4 (2017), 425–437 | MR
[23] O.A. Ladyzhenskaya, Mathematical problems of viscous incompressible fluid dynamics, Nauka, M., 1970 (in Russian) | MR
[24] A.N. Tikhonov, A.A. Samarsky, Equations of mathematical physics, Nauka, M., 1972 (in Russian) | MR