Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a104, author = {V. V. Malygina and M. V. Mulyukov and N. V. Pertsev}, title = {On local asymptotic stability of a model of epidemic process}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1301--1310}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a104/} }
TY - JOUR AU - V. V. Malygina AU - M. V. Mulyukov AU - N. V. Pertsev TI - On local asymptotic stability of a model of epidemic process JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2018 SP - 1301 EP - 1310 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a104/ LA - ru ID - SEMR_2018_15_a104 ER -
%0 Journal Article %A V. V. Malygina %A M. V. Mulyukov %A N. V. Pertsev %T On local asymptotic stability of a model of epidemic process %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2018 %P 1301-1310 %V 15 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a104/ %G ru %F SEMR_2018_15_a104
V. V. Malygina; M. V. Mulyukov; N. V. Pertsev. On local asymptotic stability of a model of epidemic process. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1301-1310. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a104/