On local asymptotic stability of a model of epidemic process
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1301-1310

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a model of the epidemic process, and use a system of differential equations with retarded argument for the description of the model. We obtain a number of stability tests for the nontrivial equilibrium point and construct stability regions in the parameter space of the original problem.
Keywords: epidemic process, mathematical model, delay differential equation, stability, stability region.
@article{SEMR_2018_15_a104,
     author = {V. V. Malygina and M. V. Mulyukov and N. V. Pertsev},
     title = {On local asymptotic stability of a model of epidemic process},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1301--1310},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a104/}
}
TY  - JOUR
AU  - V. V. Malygina
AU  - M. V. Mulyukov
AU  - N. V. Pertsev
TI  - On local asymptotic stability of a model of epidemic process
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 1301
EP  - 1310
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a104/
LA  - ru
ID  - SEMR_2018_15_a104
ER  - 
%0 Journal Article
%A V. V. Malygina
%A M. V. Mulyukov
%A N. V. Pertsev
%T On local asymptotic stability of a model of epidemic process
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 1301-1310
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a104/
%G ru
%F SEMR_2018_15_a104
V. V. Malygina; M. V. Mulyukov; N. V. Pertsev. On local asymptotic stability of a model of epidemic process. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1301-1310. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a104/