On local asymptotic stability of a model of epidemic process
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1301-1310.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a model of the epidemic process, and use a system of differential equations with retarded argument for the description of the model. We obtain a number of stability tests for the nontrivial equilibrium point and construct stability regions in the parameter space of the original problem.
Keywords: epidemic process, mathematical model, delay differential equation, stability, stability region.
@article{SEMR_2018_15_a104,
     author = {V. V. Malygina and M. V. Mulyukov and N. V. Pertsev},
     title = {On local asymptotic stability of a model of epidemic process},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1301--1310},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a104/}
}
TY  - JOUR
AU  - V. V. Malygina
AU  - M. V. Mulyukov
AU  - N. V. Pertsev
TI  - On local asymptotic stability of a model of epidemic process
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 1301
EP  - 1310
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a104/
LA  - ru
ID  - SEMR_2018_15_a104
ER  - 
%0 Journal Article
%A V. V. Malygina
%A M. V. Mulyukov
%A N. V. Pertsev
%T On local asymptotic stability of a model of epidemic process
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 1301-1310
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a104/
%G ru
%F SEMR_2018_15_a104
V. V. Malygina; M. V. Mulyukov; N. V. Pertsev. On local asymptotic stability of a model of epidemic process. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1301-1310. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a104/

[1] G. Huang, Y. Takeuchi, “Global analysis on delay epidemiological dynamic models with nonlinear incidence”, J. Math. Biol., 63:1 (2011), 125–139 | DOI | MR | Zbl

[2] Y. Muroya, T. Kuniya, J. Wang, “Stability analysis of a delayed multi-group SIS epidemic model with nonlinear incidence rates and patch structure”, J. Math. Anal. Appl., 425:1 (2015), 415–439 | DOI | MR | Zbl

[3] D. Okuonghae, “A note on some qualitative properties of a tuberculosis differential equation model with a time delay”, Differ. Equ. Dyn. Syst., 23:2 (2015), 181–194 | DOI | MR | Zbl

[4] M. A. Skvortsova, “Asymptotic properties of solutions to a system describing the spread of avian influenza”, Siberian Electronic Mathematical Reports, 13 (2016), 782–798 | MR | Zbl

[5] L. M. Taylor, T. W. Carr, “An SIR epidemic model with partial temporary immunity modeled with delay”, J. Math. Biol., 59:6 (2009), 841–880 | DOI | MR | Zbl

[6] L. Wang, R. Xu, G. Feng, “Modelling and analysis of an eco-epidemiological model with time delay and stage structure”, J. Appl. Math. Comput., 50:1–2 (2016), 175–197 | DOI | MR | Zbl

[7] Y. Xiao, L. Chen, “An SIS epidemic model with stage structure and a delay”, Acta Mathematicae Applicatae Sinica, English Series, 18:4 (2002), 607–618 | DOI | MR | Zbl

[8] Y. Yuan, J. Belair, “Threshold dynamics in an SEIRS model with latency and temporary immunity”, J. Math. Biol., 69:4 (2014), 875–904 | DOI | MR | Zbl

[9] N. V. Pertsev, B. Yu. Pichugin, A. N. Pichugina, “Investigation of an asymptotic behavior of solutions of some epidemic processes models”, Mathematical Biology and Bioinformatics, 8:1 (2013), 21–48 | DOI

[10] N. V. Azbelev, V. P. Maksimov, L. F. Rakhmatullina, Introduction to the Theory of Linear Functional Differential Equations, World Federation Publishers Company, Atlanta, 1995 | MR | MR | Zbl | Zbl

[11] N. V. Azbelev, P. M. Simonov, Stability of Differential Equations with Aftereffect, Taylor, London, 2002 | MR

[12] A. A. Andronov, A. G. Mayer, “The simplest linear systems with delay”, Automation and Remote Control, 7:2–3 (1946), 95–106 | MR | Zbl

[13] A. Yu. Obolenskiy, “On stability of solutions of Vazewski autonomous systems with delay”, Ukrainian Mathematical Journal, 35 (1983), 574–579 | MR

[14] R. Volz, “Stability Conditions for Systems of Linear Nonautonomous Delay Differential Equations”, J. Math. Anal. Appl., 120:2 (1986), 584–595 | DOI | MR | Zbl

[15] V. B. Kolmanovskiy, V. R. Nosov, Stability and periodic modes of a controlled systems with aftereffect, Nauka, M., 1981 | MR

[16] T. L. Sabatulina, V. V. Malygina, “On stability of a differential equation with bounded aftereffect”, Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 4 (2014), 25–41 | MR | Zbl

[17] R. Bellman, K. L. Cooke, Differential-Difference Equations, Mir, M., 1967 | MR | Zbl

[18] M. V. Mulyukov, “Stability of a linear differential equation with double delay”, Proceedings of VIII International Conference “Modern Problems of Applied Mathematics, Control Theory and Computer Science (AMCTCS-2018)” (Voronezh, Russia, 2015), 258–260

[19] M. V. Mulyukov, “The structure of D-decomposition regions for two-parameter characteristic equations of systems with delay”, Functional Differential Equations: Theory and Applications, Perm National Research Polytechnic University, Perm, 2018, 180–200

[20] T. Luzyanina, J. Sieber, K. Engelborghs, G. Samaey, D. Roose, “Numerical bifurcation analysis of mathematical models with time delays with the package DDE-BIFTOOL”, Mathematical Biology and Bioinformatics, 12:2 (2017), 496–520 | DOI