Mathematical and numerical models of two asymmetric gene networks
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1271-1283.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct and study mathematical models of two gene networks: a circular gene network of molecular repressilator, and a natural gene network which does not have circular structure. For the first model, we consider discretization of phase portrait of corresponding nonlinear dynamical system and find conditions of existence of an oscillating trajectory (cycle) in this phase portrait. The second model describes the central regulatory circuit of one gene network which acts on early stage of the fruit fly Drosophila melanogaster mechanoreceptors morphogenesis. For both models we give biological interpretations of our numerical simulations and give a short description of software elaborated specially for these experiments.
Keywords: nonlinear dynamical systems, gene networks models, hyperbolic equilibrium points, Grobman-Hartman theorem, Brouwer fixed point theorem, numerical analysis.
Mots-clés : cycles, phase portraits
@article{SEMR_2018_15_a103,
     author = {V. P. Golubyatnikov and M. V. Kazantsev and N. E. Kirillova and T. A. Bukharina},
     title = {Mathematical and numerical models  of two asymmetric gene networks},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1271--1283},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a103/}
}
TY  - JOUR
AU  - V. P. Golubyatnikov
AU  - M. V. Kazantsev
AU  - N. E. Kirillova
AU  - T. A. Bukharina
TI  - Mathematical and numerical models  of two asymmetric gene networks
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 1271
EP  - 1283
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a103/
LA  - en
ID  - SEMR_2018_15_a103
ER  - 
%0 Journal Article
%A V. P. Golubyatnikov
%A M. V. Kazantsev
%A N. E. Kirillova
%A T. A. Bukharina
%T Mathematical and numerical models  of two asymmetric gene networks
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 1271-1283
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a103/
%G en
%F SEMR_2018_15_a103
V. P. Golubyatnikov; M. V. Kazantsev; N. E. Kirillova; T. A. Bukharina. Mathematical and numerical models  of two asymmetric gene networks. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1271-1283. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a103/

[1] H. Kobayashi, M. Kaern, M. Araki, K. Chung, T.S. Gardner, C.R. Cantor, J.J. Collins, “Programmable cells: Interfacing natural and engineered gene networks”, Proc. Natl. Acad. Sci. USA, 101:22 (2004) | DOI

[2] P.E. Purnick, R. Weiss, “The second wave of synthetic biology: from modules to systems”, Nat. Rev. Mol. Cell. Biol., 10 (2009), 410–422 | DOI

[3] M.A. Nuriddiniv, F.V. Kazantsev, A.S. Rozanov, K.N. Kozlov, S.E. Peltek, N.A. Kolchanov, I.R. Akberdin, “Mathematical modeling of synthesis of bioethanol and lactic acid by thermophylic bacteria Geobacillus”, The Herald of Vavilov society for geneticists and breeding scientists, 17:4/1 (2013), 686–705

[4] B. Jusiak, R. Daniel, F. Farzadfard, L. Nissim, O. Purcell, J. Rubens, T.K. Lu, “Synthetic Gene Circuits”, Encyclopedia of Molecular Cell Biology and Molecular Medicine: Synthetic Biology, 2-d Edition, ed. R.A. Meyers, Wiley-VCH Verlag GmbH Co. KGaA, 2014

[5] Lai Y. H., Sun S. C., Chuang M.C, “Biosensors with built-in biomolecular logic gates for practical applications”, Biosensors (Basel), 4:3 (2014), 273–300 | DOI

[6] R.W. Bradley, B. Wang, “Designer cell signal processing circuits for biotechnology”, New Biotechnol., 32:6 (2015), 635–643 | DOI

[7] R.W. Bradley, M. Buck, B.J. Wang, “Tools and Principles for Microbial Gene”, Circuit Engineering Mol. Biol., 428 (2016), 862–888 | DOI

[8] E. Bernard, B. Wang, “Synthetic Cell-Based Sensors with Programmed Selectivity and Sensitivity”, Biosensors and Biodetection, Methods in Molecular Biology, 1572, eds. Prickril B., Rasooly A., Humana Press, New York, NY, 2017

[9] V.A. Likhoshvai, V.P. Golubyatnikov, G.V. Demidenko, et al., “Theory of Gene Networks”, Computational Systems Biology, SB RAS, Novosibirsk, 2008, 395–480 (in Russian)

[10] T.A. Bukhariha, D.P. Furman, V.P. Golubyatnikov, “Gene network controlling the morphogenesis of D. melanogaster macrochaetes: an expanded model of the central regulatory circuit”, Russian Journal of Development Biology, 47:5 (2016), 288–293 | DOI

[11] M.B. Elowitz, S. Leibler, “A Synthetic Oscillatory Network of Transcriptional Regulators”, Nature, 403 (2000), 335–338 | DOI

[12] M.V. Kazantsev, “On some properties of the domains graph of dynamical systems”, Siberian Journal of Industrial Mathematics, 18:4 (2015), 42–48 (in Russian) | MR | Zbl

[13] A. Yu. Kolesov, N. Kh. Rozov, V.A. Sadovnichii, “Periodic solutions of travelling-wave type in circular gene networks”, Izvestiya: Mathematics, 80:3 (2016), 523–548 | DOI | MR | Zbl

[14] N.B. Ayupova, V.P. Golubyatnikov, “On the uniqueness of a cycle in an asymmetric three-dimensional model of a molecular repressilator”, Journal of applied and industrial mathematics, 8:2 (2014), 153–157 | DOI | MR | Zbl

[15] N.B. Ayupova, V.P. Golubyatnikov, M.V. Kazantsev, “On the Existence of a Cycle in an Asymmetric Model of a Molecular Repressilator”, Numerical Analysis and Applications, 10:2 (2017), 101–107 | DOI | MR | Zbl

[16] H.I. Banks, J.M. Mahaffy, “Stability of Cyclic Gene Models for Systems Involving Repression”, Journ. Theor. Biol., 74 (1978), 323–334 | DOI | MR

[17] V.P. Golubyatnikov, N.E. Kirillova, “On cycles in models of circular gene networks functioning”, Siberian Journ. of Pure and Applied Mathematics, 18:1 (2018), 78–87 (in Russian) | MR

[18] S.K. Godunov, Modern aspects of linear algebra, Translations of Mathematical Monographs, 175, American Mathematical Society, Providence, RI, 1998 | DOI | MR | Zbl

[19] P. Hartman, “On local homeomorphisms of Euclidean spaces”, Bol. Soc. Mat. Mexicana (2), 5 (1960), 220–241 | MR | Zbl

[20] Yu.G. Borisovich, N.M. Bliznyakov, Ya.A. Izrailevich, Fomenko T. N., Introduction to topology, Fizmatlit “Nauka”, M., 1995 (in Russian) | MR | Zbl

[21] L. Glass, J.S. Pasternack, “Stable Oscillations in Mathematical Models of Biological Control Systems”, Journal of Mathematical Biology, 6:3 (1978), 207–223 | DOI | MR | Zbl

[22] N. Reeves, J.W. Posakony, “Genetic programs activated by proneural proteins in the developing Drosophila”, PNS. Dev. Cell., 8 (2005), 413–425 | DOI

[23] P.J. Chang, Y.L. Hsiao, A.C. Tien, Li Y.C., H. Pi, “Negative-feedback regulation of proneural proteins controls the timing of neural precursor division”, Development, 135:18 (2008), 3021–3030 | DOI

[24] M.V. Kazantsev, “Software for modeling of early stages of some bioogical processes”, Herald of Novosibirsk state university, series of Computer Sciences, 14:3 (2016), 25–33 (in Russian)

[25] D.P. Furman, T.A. Bukharina, “The gene network determining development of Drosophila melanogaster mechanoreceptors”, Computat. Biology and Chemistry, 33 (2009), 231–234. | DOI

[26] G.V. Demidenko, “Systems of differential equations of higher dimensions and delay equations”, Siberian mathematical journal, 53:6 (2012), 1021–1028 | DOI | MR | Zbl

[27] G.V. Demidenko, N.A. Kolchanov, V.A. Likhoshvai, Yu.G. Matushkin, S.I. Fadeev, “Mathematical simulation of regulatory circuits of gene networks”, Comput. Math. Math. Phys., 44:12 (2014), 2166–2183 | MR

[28] T.A. Bukharina, D.P. Furman, V.P. Golubyatnikov, “A model study of the morphogenesis of D. melanogaster mechanoreceptors: The central regulatory circuit”, Journal of Bioinformatics and Computational Biology, 13:01 (2015), 1540006, 15 pp. | DOI

[29] Soetaert Karline, Petzoldt Thomas, Setzer R. Woodrow, “Solving Differential Equations in R: Package deSolve”, Journal of Statistical Software, 33:9 (2010), 1–25 http://www.jstatsoft.org/v33/i09 | DOI

[30] M.V. Kazantsev, A.A. Akinshin, V.P. Golubyatnikov, “Comparative analysis of some numerical methods of gene networks modeling on the basisi of the language R”, Proceedings of International Conference “Altai Lomonosov Readings. Fundamental problems of science and education”, Altai state university, Barnaul, 2014, 548–554 (in Russian)

[31] Hindmarsh C. Alan, “ODEPACK, A Systematized Collection of ODE Solvers”, Scientific Computing, 1983, 55–64 | MR

[32] T. Danino, O. Mondragón-Palomino, L. Tsimring, J. Hasty, “A synchronized quorum of genetic clocks”, Nature, 463 (2010), 326–330 | DOI

[33] M. Fernandez-Niño, D. Giraldo, J.L. GomezPorras, I. Dreyer, A.F. Gonzalez Barrios, C. Arevalo-Ferro, “A synthetic multi-cellular network of coupled self-sustained oscillators”, PLoS ONE, 12:6 (2017), e0180155 | DOI