Asymptotic properties of solutions in a model of antibacterial immune response
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1198-1215.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper we consider a model of antibacterial immune response proposed by G.I. Marchuk. The model is described by a system of differential equations with three delays. We study the asymptotic stability of the stationary solution corresponding to a healthy organism. We obtain estimates of the attraction set of this solution and establish estimates of solutions characterizing the stabilization rate at infinity. The results are obtained using a modified Lyapunov–Krasovskii functional.
Keywords: antibacterial immune response, delay differential equations, asymptotic stability, estimates of solutions, attraction set, modified \linebreak Lyapunov–Krasovskii functional.
@article{SEMR_2018_15_a101,
     author = {M. A. Skvortsova},
     title = {Asymptotic properties of solutions in a model of antibacterial immune response},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1198--1215},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a101/}
}
TY  - JOUR
AU  - M. A. Skvortsova
TI  - Asymptotic properties of solutions in a model of antibacterial immune response
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 1198
EP  - 1215
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a101/
LA  - ru
ID  - SEMR_2018_15_a101
ER  - 
%0 Journal Article
%A M. A. Skvortsova
%T Asymptotic properties of solutions in a model of antibacterial immune response
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 1198-1215
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a101/
%G ru
%F SEMR_2018_15_a101
M. A. Skvortsova. Asymptotic properties of solutions in a model of antibacterial immune response. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1198-1215. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a101/

[1] G.I. Marchuk, Mathematical Models in Immunology. Computational Methods and Experiments, 3d edition, Nauka, M., 1991 (in Russian) | MR

[2] G.I. Marchuk, A Basic Mathematical Model of Viral Disease, Preprint, Computational Centre of the Siberian Branch of the USSR Academy of Sciences, Novosibirsk, Russia, 1975, 22 pp. (in Russian) | MR | Zbl

[3] L.N. Belykh, Analysis of Mathematical Models in Immunology, Nauka, M., 1988 (in Russian) | MR | Zbl

[4] N.N. Krasovskii, Some Problems of Stability Theory of Motion, Fizmatgiz, M., 1959 (in Russian) | MR

[5] D. Ya. Khusainov, A.F. Ivanov, A.T. Kozhametov, “Convergence estimates for solutions of linear stationary systems of differential-difference equations with constant delay”, Differential Equations, 41:8 (2005), 1196–1200 | DOI | MR | Zbl

[6] V.L. Kharitonov, D. Hinrichsen, “Exponential estimates for time delay systems”, Systems and Control Letters, 53:5 (2004), 395–405 | DOI | MR | Zbl

[7] S. Mondie, V.L. Kharitonov, “Exponential estimates for retarded time-delay systems: LMI approach”, IEEE Transactions on Automatic Control, 50:2 (2005), 268–273 | DOI | MR | Zbl

[8] G.V. Demidenko, I.I. Matveeva, “Asymptotic properties of solutions to delay differential equations”, Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya: Matematika, Mekhanika, Informatika, 5:3 (2005), 20–28 (in Russian) | Zbl

[9] G.V. Demidenko, Matrix Equations, Textbook, Publishing Office of the Novosibirsk State University, Novosibirsk, Russia, 2009 (in Russian)

[10] M. Skvortsova, “Asymptotic properties of solutions in Marchuk's basic model of disease”, Functional Differential Equations, 24:3–4 (2017), 127–135 | MR

[11] Ph. Hartman, Ordinary Differential Equations, John Wiley Sons, New York–London–Sydney, 1964 | MR | Zbl

[12] L. Yu. Anapolskii, S.V. Timofeev, “Estimations of attractive region of stable equilibrium points for Marchuk's immunological model”, Matematicheskoe Modelirovanie, 7:3 (1995), 66–74 (in Russian) | MR

[13] C.T.H. Baker, G.A. Bocharov, “Computational aspects of time-lag models of Marchuk type that arise in immunology”, Russian Journal of Numerical Analysis and Mathematical Modelling, 20:3 (2005), 247–262 | DOI | MR | Zbl

[14] U. Forys, “Stability and bifurcations for the chronic state in Marchuk's model of an immune system”, Journal of Mathematical Analysis and Applications, 352:2 (2009), 922–942 | DOI | MR | Zbl

[15] I. Gyori, N.V. Pertsev, “On the stability of equilibrium states of functional-differential equations of retarded type having the mixed monotonicity property”, Soviet Mathematics. Doklady, 36:3 (1988), 404–407 | MR | Zbl

[16] N.A. Karatueva, R.V. Kharchenko, “Problems of control for immunological models”, Nonlinear Analysis. Real World Applications, 7:4 (2006), 829–840 | DOI | MR | Zbl

[17] G.P. Kuznetsova, “The inverse problem for the Marchuk immunologic “simplest model””, Dal'nevostochnyi Matematicheskiy Zhurnal, 4:1 (2003), 134–140

[18] V.P. Martsenyuk, “On stability of immune protection model with regard for damage of target organ: the degenerate Liapunov functionals method”, Cybernetics and Systems Analysis, 40:1 (2004), 126–136 | DOI | MR | Zbl

[19] N.V. Pertsev, “Stability analysis of a stationary solution to a modified antiviral immune response model”, Vestnik Omskogo Universiteta, 3:3 (1998), 19–21 (in Russian) | MR | Zbl

[20] A.A. Romanyukha, S.G. Rudnev, “A variational principle for modeling infection immunity by the example of pneumonia”, Matematicheskoe Modelirovanie, 13:8 (2001), 65–84 (in Russian) | MR | Zbl