Anisotropic vanishing diffusion method applied to genuinely nonlinear forward-backward ultra-parabolic equations
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1158-1173.

Voir la notice de l'article provenant de la source Math-Net.Ru

The results formulated in (I.V. Kuznetsov, Sib. Elect. Math. Rep. 14 (2017), 710–731) are extended onto the multi-time case. We prove existence and uniqueness of kinetic solutions to genuinely nonlinear forward-backward ultra-parabolic equations and show that kinetic solutions do not depend on the anisotropic elliptic regularization.
Keywords: forward-backward ultra-parabolic equation, entropy solution, kinetic solution.
@article{SEMR_2018_15_a100,
     author = {I. V. Kuznetsov and S. A. Sazhenkov},
     title = {Anisotropic vanishing diffusion method applied to genuinely nonlinear forward-backward ultra-parabolic equations},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1158--1173},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a100/}
}
TY  - JOUR
AU  - I. V. Kuznetsov
AU  - S. A. Sazhenkov
TI  - Anisotropic vanishing diffusion method applied to genuinely nonlinear forward-backward ultra-parabolic equations
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 1158
EP  - 1173
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a100/
LA  - en
ID  - SEMR_2018_15_a100
ER  - 
%0 Journal Article
%A I. V. Kuznetsov
%A S. A. Sazhenkov
%T Anisotropic vanishing diffusion method applied to genuinely nonlinear forward-backward ultra-parabolic equations
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 1158-1173
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a100/
%G en
%F SEMR_2018_15_a100
I. V. Kuznetsov; S. A. Sazhenkov. Anisotropic vanishing diffusion method applied to genuinely nonlinear forward-backward ultra-parabolic equations. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1158-1173. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a100/

[1] A.L. Amadori, R. Natalini, “Entropy solutions to a strongly degenerate anisotropic convection–diffusion equation with application to utility theory”, J. Math. Anal. Appl., 284 (2003), 511–531 | DOI | MR | Zbl

[2] S.N. Antontsev, A.V. Kazhikhov, V.N. Monakhov, Boundary Value Problems in Mechanics of Nonhomogeneous Fluids, North-Holland Publishing Co., Amsterdam, 1990 | MR | Zbl

[3] S.N. Antontsev, I.V. Kuznetsov, “Singular perturbations of forward-backward p-parabolic equations”, JEPE, 2 (2016), 357–370 | MR | Zbl

[4] S.N. Antontsev, I.V. Kuznetsov, “Existence of entropy measure-valued solutions for forward-backward p-parabolic equations”, Sib. Elect. Math. Rep., 14 (2017), 774–793 | MR | Zbl

[5] S. Antontsev, S. Shmarev, Evolution PDEs with Nonstandard Growth Conditions: Existence, Uniqueness, Localization, Blow-up, Atlantis Press, Paris, 2015 | MR | Zbl

[6] C. Bardos, A.Y. Le Roux, J.-C. Nedelec, “First order quasilinear equations with boundary conditions”, Communications in Partial Differential Equations, 4:9 (1979), 1017–1034 | DOI | MR | Zbl

[7] O.B. Bocharov, “On the first boundary value problem for the forward-backward parabolic equation”, Dynamika Sploshnoy Sredy, 37 (1978), 27–39 (in Russian) | MR

[8] M. Chipot, S. Guesmia, A. Sengouga, “Singular perturbations of some nonlinear problems”, J. Math. Sc., 176 (2011), 828–843 | DOI | MR | Zbl

[9] M.M. Chipot, Asymptotic Issues for Some Partial Differential Equations, Imperial College Press, Zurich, 2016 | MR | Zbl

[10] G.M. Coclite, K.H. Karlsen, Y.-S. Kwon, “Initial-boundary value problems for conservation laws with source terms and the Degasperis-Procesi equation”, J. Func. Anal., 257 (2009), 3823–3857 | DOI | MR | Zbl

[11] C. De Lellis, F. Otto, M. Westdickenberg, “Structure of entropy solutions for multi-dimensional scalar conservation laws”, Arch. Ration. Mech. Anal., 170 (2003), 137–184 | DOI | MR | Zbl

[12] F. Dubois, Ph. LeFloch, “Boundary conditions for nonlinear hyperbolic systems of conservation laws”, J. Differ. Equ., 71 (1988), 93–122 | DOI | MR | Zbl

[13] M. Escobedo, J.L. Vázquez, E. Zuazua, “Entropy solutions for diffusion-convection equations with partial diffusivity”, Trans. Amer. Math. Soc., 343:2 (1994), 829–842 | DOI | MR | Zbl

[14] L.C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, 19, Second ed., AMS, 2010 | DOI | MR | Zbl

[15] C. Imbert, J. Vovelle, “Kinetic formulation for multidimensional scalar conservation laws with boundary conditions and applications”, SIAM J. Math. Anal., 36:1 (2004), 214–232 | DOI | MR | Zbl

[16] S.N. Kruzhkov, I.M. Kolodii, “On the theory of embedding of anisotropic Sobolev spaces”, Russ. Math. Surv., 38 (1983), 188–189 | DOI | MR | Zbl

[17] I.V. Kuznetsov, “Traces of entropy solutions to second order forward-backward parabolic equations”, J. Math. Sc., 211 (2015), 767–788 | DOI | MR | Zbl

[18] I.V. Kuznetsov, “Kinetic formulation of forward-backward parabolic equations”, Sib. Elect. Math. Rep., 13 (2016), 930–949 | MR | Zbl

[19] I.V. Kuznetsov, “Genuinely nonlinear forward-backward ultra-parabolic equations”, Sib. Elect. Math. Rep., 14 (2017), 710–731 | MR | Zbl

[20] Y.-S. Kwon, “Well-posedness for entropy solution of multidimensional scalar conservation laws with strong boundary condition”, J. Math. Anal. Appl., 340 (2008), 543–549 | DOI | MR | Zbl

[21] M. Lazar, D. Mitrovic, “Velocity averaging — a general framework”, Dyn. Partial Differ. Equ., 9 (2012), 239–260 | DOI | MR | Zbl

[22] J.-L. Lions, Perturbations Singuliéres dans les Problémes aux Limites et en Contr$\hat{o}$l Optimal, Springer, Berlin, 1973 | MR

[23] J.-L. Lions, E. Magenes, “Problemi ai limiti non omogenei (III)”, Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 3$^e$ série, 15:1–2 (1961), 41–103 | MR | Zbl

[24] P.-L. Lions, B. Perthame, E. Tadmor, “A kinetic formulation of multidimensional scalar conservation laws and related equations”, J. Am. Math. Soc., 7 (1994), 169–191 | DOI | MR | Zbl

[25] P. Marcati, R. Natalini, “Convergence of the pseudo-viscosity approximation for conservation laws”, Nonlinear Anal., 23:5 (1994), 621–628 | DOI | MR | Zbl

[26] A. Matas, J. Merker, “The limit of vanishing viscosity for doubly nonlinear parabolic equations”, Electron. J. Qual. Theory Differ. Equ., 8 (2014), 1–14 | DOI | MR

[27] V.N. Monakhov, “Reciprocal flows in boundary layer”, Dynamika Sploshnoy Sredy, 113 (1998), 107–113 (in Russian) | MR | Zbl

[28] F. Otto, “Initial-boundary value problem for a scalar conservation law”, Comptes Rendus de l'Academie des Sciences. Serie I. Mathematique, 322:8 (1996), 729–734 | MR | Zbl

[29] E.Yu. Panov, “Existence of strong traces for generalized solutions of multidimensional scalar conservation laws”, J. Hyperbolic Differ. Equ., 2:4 (2005), 885–908 | DOI | MR | Zbl

[30] E.Yu. Panov, “Existence of strong traces for quasi-solutions of multidimensional conservation laws”, J. Hyperbolic Differ. Equ., 4:4 (2007), 729–770 | DOI | MR | Zbl

[31] E.Yu. Panov, “Ultra-parabolic equations with rough coefficients. Entropy solutions and strong precompactness property”, J. Math. Sc., 159:2 (2009), 180–228 | DOI | MR | Zbl

[32] E.Yu. Panov, “Ultra-parabolic H-measures and compensated compactness”, Ann. I. H. Poincaré – AN, 28 (2011), 47–62 | DOI | MR | Zbl

[33] E.Yu. Panov, “On the Dirichlet problem for first order quasilinear equations on a manifold”, Trans. Amer. Math. Soc., 363:5 (2011), 2393–2446 | DOI | MR | Zbl

[34] B. Perthame, Kinetic Formulation of Conservation Laws, Ox. Univ. Press, Oxford, 2002 | MR | Zbl

[35] R. Salvi, “On the existence of periodic weak solutions of Navier-Stokes equations in regions with periodically moving boundaries”, Acta Appl. Math., 37:1–2 (1994), 169–179 | DOI | MR | Zbl

[36] O. Steinbach, Numerical Approximation Methods for Elliptic Boundary Value Problems, Finite and Boundary Elements, Springer, 2003 | MR | Zbl

[37] L. Tartar, The General Theory of Homogenization. A Personalized Introduction, Springer-Verlag, Berlin, 2009 | MR | Zbl

[38] Al.S. Tersenov, “On the global solvability of the Cauchy problem for a quasilinear ultraparabolic equation”, Asymptot. Anal., 82 (2013), 295–314 | MR | Zbl

[39] A. Vasseur, “Strong traces for solutions of multidimensional scalar conservation laws”, Arch. Ration. Mech. Anal., 160 (2001), 181–193 | DOI | MR | Zbl