Anisotropic vanishing diffusion method applied to genuinely nonlinear forward-backward ultra-parabolic equations
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1158-1173

Voir la notice de l'article provenant de la source Math-Net.Ru

The results formulated in (I.V. Kuznetsov, Sib. Elect. Math. Rep. 14 (2017), 710–731) are extended onto the multi-time case. We prove existence and uniqueness of kinetic solutions to genuinely nonlinear forward-backward ultra-parabolic equations and show that kinetic solutions do not depend on the anisotropic elliptic regularization.
Keywords: forward-backward ultra-parabolic equation, entropy solution, kinetic solution.
@article{SEMR_2018_15_a100,
     author = {I. V. Kuznetsov and S. A. Sazhenkov},
     title = {Anisotropic vanishing diffusion method applied to genuinely nonlinear forward-backward ultra-parabolic equations},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1158--1173},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a100/}
}
TY  - JOUR
AU  - I. V. Kuznetsov
AU  - S. A. Sazhenkov
TI  - Anisotropic vanishing diffusion method applied to genuinely nonlinear forward-backward ultra-parabolic equations
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 1158
EP  - 1173
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a100/
LA  - en
ID  - SEMR_2018_15_a100
ER  - 
%0 Journal Article
%A I. V. Kuznetsov
%A S. A. Sazhenkov
%T Anisotropic vanishing diffusion method applied to genuinely nonlinear forward-backward ultra-parabolic equations
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 1158-1173
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a100/
%G en
%F SEMR_2018_15_a100
I. V. Kuznetsov; S. A. Sazhenkov. Anisotropic vanishing diffusion method applied to genuinely nonlinear forward-backward ultra-parabolic equations. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1158-1173. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a100/