On intersection two nilpotent subgroups in small groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 21-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we prove that if $G$ is a finite almost simple group with socle isomorphic to $G_2(3)$, $G_2(4)$, $F_4(2)$, ${}^2E_6(2)$, $Sz(8)$, then for every nilpotent subgroups $A,B$ of $G$ there exists an element $g\in G$ such that $A\cap B^g=1$, except the case $G=Aut(F_4(2))$, and $A,B$ are $2$-groups.
Keywords: finite group, nilpotent subgroup, intersection of subgroups.
Mots-clés : simple group
@article{SEMR_2018_15_a0,
     author = {V. I. Zenkov},
     title = {On intersection two nilpotent subgroups in small groups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {21--28},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a0/}
}
TY  - JOUR
AU  - V. I. Zenkov
TI  - On intersection two nilpotent subgroups in small groups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 21
EP  - 28
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a0/
LA  - ru
ID  - SEMR_2018_15_a0
ER  - 
%0 Journal Article
%A V. I. Zenkov
%T On intersection two nilpotent subgroups in small groups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 21-28
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a0/
%G ru
%F SEMR_2018_15_a0
V. I. Zenkov. On intersection two nilpotent subgroups in small groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 21-28. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a0/

[1] Zenkov V. I., “Intersections of abelian subgroups in finite groups”, Math. zametki, 56 (1994), 869–871 | MR | Zbl

[2] Mazurov V. D., Zenkov V. I., “On intersection of sylov subgroups in finite groups”, Algebra i logika, 35:4 (1996), 424–432 | MR | Zbl

[3] Zenkov V. I., “On intersections two nilpotent subgroups in small finite groups”, Sib. El. Math. Rep., 13 (2016), 1099–1115 | MR | Zbl

[4] The Kourovka notebook. Unsolved problems in group theory, No 18, IM SD RAS, Novosibirsk, 2014, 227 pp. http://math.nsc.ru/ãlglog/18tkt.pdf

[5] Gorenstein D., Lyons R., Solomon R., The Classification of the Finite Simple Groups, Mathematical surveys and monographs, 40, no. 3, Amer. Math. Soc., Providence, Rhode Island, 1991 | MR

[6] Convay J. H. et. al., Atlas of finite group, Clarendon Press, Oxford, 1985

[7] Zenkov V. I., “On intersections nilpotent subgroups in finite simmetric and altornative groups”, Tr. in-ta mat. and mech. UrO RAN, 19, no. 3, 2013, 145–149 | MR

[8] Gorenstein D., Finite simple groups. Introduction in classification, Mir, M., 1985 | MR

[9] Jamali A. R., Viseh M., “On nilpotent subgroups containing nontrivial normal subgroups”, J. of Group Theory, 13:4 (2010), 411–416 | MR | Zbl

[10] Zenkov V. I., “On intersections two nilpotent subgroups in finite groups with socle $L_2(q)$”, Sib. Math. J., 57:6 (2016), 1280–1290 | MR | Zbl

[11] Zenkov V. I., “Intersections nilpotent subgroups in finite groups”, Fund. and pricl. math., 2:1 (1996), 1–92 | MR | Zbl

[12] Zenkov V. I., Nuzhin Y. N., “On intersections of primary subgroups of odd order in finite almost simple groups”, Fundam. and applied mathematics, 19:6 (2014), 115–123 | MR

[13] Aschbacher M., Seitz G. M., “Involutions in chevalley groups over fields of even order”, Nagoya Mathematical J., 63:10 (1976), 1–91 | MR | Zbl

[14] Zenkov V. I., “On intersections of abelian and nilpotent subgroups in finite groups. I”, Tr. in-ta mat. and mech. UrO RAN, 31, no. 3, 2015, 128–131 | MR