On intersection two nilpotent subgroups in small groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 21-28

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we prove that if $G$ is a finite almost simple group with socle isomorphic to $G_2(3)$, $G_2(4)$, $F_4(2)$, ${}^2E_6(2)$, $Sz(8)$, then for every nilpotent subgroups $A,B$ of $G$ there exists an element $g\in G$ such that $A\cap B^g=1$, except the case $G=Aut(F_4(2))$, and $A,B$ are $2$-groups.
Keywords: finite group, nilpotent subgroup, intersection of subgroups.
Mots-clés : simple group
@article{SEMR_2018_15_a0,
     author = {V. I. Zenkov},
     title = {On intersection two nilpotent subgroups in small groups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {21--28},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a0/}
}
TY  - JOUR
AU  - V. I. Zenkov
TI  - On intersection two nilpotent subgroups in small groups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 21
EP  - 28
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a0/
LA  - ru
ID  - SEMR_2018_15_a0
ER  - 
%0 Journal Article
%A V. I. Zenkov
%T On intersection two nilpotent subgroups in small groups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 21-28
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a0/
%G ru
%F SEMR_2018_15_a0
V. I. Zenkov. On intersection two nilpotent subgroups in small groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 21-28. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a0/