Maximization problems for eigenvalues of linear elliptic operators
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1349-1372.

Voir la notice de l'article provenant de la source Math-Net.Ru

Maximization problems for eigenvalues of elliptic operators are considered. The problems under investigation are optimal control problems in coefficients, admissible controls form a weak* compact set of essentially bounded measurable functions, and convexity hypotheses on the coefficients of operators are made. The purpose of this article is twofold: (i) to derive necessary optimality conditions, which form a basis for efficient numerical solution; (ii) to describe the structure of the set of solutions for such a problem, to prove uniqueness criteria, and to characterize the case of non-uniqueness. The main idea of the article is that, even in the case of multiple eigenvalues, one can derive necessary optimality conditions, which involve only one eigenfunction. The derived necessary optimality conditions also make it possible to replace the original non-smooth extremal problem by the problem of finding a saddle point of a certain concrete functional. Applications of the results to optimal design problems for non-homogeneous columns and three-layered plates are given.
Keywords: eigenvalue optimization, elliptic boundary-value problems, control in coefficients, uniqueness criteria, optimality conditions, saddle points, multiple eigenvalues, optimal structural design, non-homogeneous column, buckling, three-layered plate.
@article{SEMR_2017_14_a99,
     author = {V. Yu. Goncharov},
     title = {Maximization problems for eigenvalues of linear elliptic operators},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1349--1372},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a99/}
}
TY  - JOUR
AU  - V. Yu. Goncharov
TI  - Maximization problems for eigenvalues of linear elliptic operators
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 1349
EP  - 1372
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a99/
LA  - ru
ID  - SEMR_2017_14_a99
ER  - 
%0 Journal Article
%A V. Yu. Goncharov
%T Maximization problems for eigenvalues of linear elliptic operators
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 1349-1372
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a99/
%G ru
%F SEMR_2017_14_a99
V. Yu. Goncharov. Maximization problems for eigenvalues of linear elliptic operators. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1349-1372. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a99/

[1] N.V. Banichuk, Problems and Methods of Optimal Structural Design, Plenum Press, New York, 1983 | MR

[2] W.G. Litvinov, Optimization in Elliptic Problems with Applications to Mechanics of Deformable Bodies and Fluid Mechanics, Birkhäuser Verlag, Basel, 2000 | MR | Zbl

[3] V.Yu. Goncharov, “Existence Criteria in Some Extremum Problems Involving Eigenvalues of Elliptic Operators”, Journal of Siberian Federal University, Mathematics and Physics, 9:1 (2016), 37–47 | DOI

[4] A. Henrot, Extremum Problems for Eigenvalues of Elliptic Operators, Birkhäuser Verlag, Basel, 2006 | MR | Zbl

[5] E.J. Haug, B. Rousselet, “Design Sensitivity Analysis in Structural Mechanics. II. Eigenvalue Variations”, Journal of Structural Mechanics, 8:2 (1980), 161–186 | DOI | MR

[6] A. Myslinski, “Bimodal Optimal Design of Vibrating Plates Using Theory and Methods of Nondifferentiable Optimization”, Journal of Optimization Theory and Applications, 46:2 (1985), 187–203 | DOI | MR | Zbl

[7] S.J. Cox, “The Generalized Gradient at a Multiple Eigenvalue”, Journal of Functional Analysis, 133 (1995), 30–40 | DOI | MR | Zbl

[8] S.J. Cox, J.R. McLaughlin, “Extremal Eigenvalue Problems for Composite Membranes, II”, Applied Mathematics and Optimization, 22 (1990), 169–187 | DOI | MR | Zbl

[9] S.J. Cox, M.L. Overton, “On the optimal design of columns against buckling”, SIAM Journal on Mathematical Analysis, 23:2 (1992), 287–325 | DOI | MR | Zbl

[10] V. Barbu, T. Precupanu, Convexity and Optimization in Banach Spaces, Springer, New York, 2012 | MR | Zbl

[11] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011 | MR | Zbl

[12] F.H. Clarke, Yu.S. Ledyaev, R.J. Stern, P.R. Wolenski, Nonsmooth Analysis and Control Theory, Springer-Verlag, New York, 1998 | MR | Zbl

[13] F.H. Clarke, “A new approach to Lagrange multipliers”, Mathematics of Operations Research, 1:2 (1976), 165–174 | DOI | MR