Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2017_14_a98, author = {Z. Bekri and S. Benaicha}, title = {Existence of solution for a nonlinear three-point boundary value problem}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1120--1134}, publisher = {mathdoc}, volume = {14}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a98/} }
TY - JOUR AU - Z. Bekri AU - S. Benaicha TI - Existence of solution for a nonlinear three-point boundary value problem JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2017 SP - 1120 EP - 1134 VL - 14 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a98/ LA - en ID - SEMR_2017_14_a98 ER -
Z. Bekri; S. Benaicha. Existence of solution for a nonlinear three-point boundary value problem. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1120-1134. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a98/
[1] R. P. Agarwal, Boundary Value Problems for Higher-Order Differntial Equations, MATSCIENCE. The institute of Mathematics Science, Madras-600020, INDIA, July, 1979 | MR
[2] A. Alomari, N. R. Anakira, A. S. Bataineh, I. Hashim, Approximate Solution of Nonlinear System of BVP Arising in Fluid Flo Problem, Mathematical Problems in Engineering, 2013 | MR
[3] A. Boutayeb, A. Chetouani, “A Mini-Review of Numerical Methods for High-Order Problemsy”, International Journal of Computer Mathematics, 84:4 (2007), 563–579 | DOI | MR | Zbl
[4] S. P. Chang, Infinite Beams on an Elastic Foundation, 1965
[5] R. Cortell, “Application of The Fourth-Order Runge-Kutta Method for The Solution of High-Order General Initial Value Problems”, Computers and Structures, 49:5 (1993), 897–900 | DOI | MR | Zbl
[6] K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, 1985 | MR | Zbl
[7] P. W. Eloea, B. Ahmad, “Positive Solutions of a Nonlinear nth-Order Boundary Value Problem With Nonlocal Conditions”, Applied Mathematics Letters, 18:5 (2005), 521–527 | DOI | MR
[8] J. R. Graef, T. Moussaoui, “A Class of nth-Order Boundary Value Problems With Nonlocal Condition”, Comput. Math. Appl., 58:8 (2009), 1662–1671 | DOI | MR | Zbl
[9] S. R. Jator, “Numerical Integrators for Fourth Order Initial and Boundary Value Problems”, International Journal of Pure and Applied Mathematics, 47:4 (2008), 563–576 | MR | Zbl
[10] Y. Ji, Y. Guo, “The Existence of Contably Many Positive Solutions for Some Nonlinear nth-Order m-Point Boundary Value Problems”, Journal of Computational and Applied Mathematics, 232:2 (2009), 187–200 | DOI | MR | Zbl
[11] O. Kelesoglu, “The Solution of Fourth Order Boundary Value Problem Arising Out of The Beam-Column Theory Using Adomian Decomposition Method”, Mathematical Problems in Engineering, 2014, 649471 | MR
[12] Y. Liu, W. Ge, “Positive Solutions for (n-1, 1) Three-Point Boundary Value Problems With Coefficient That Changes Sign”, J. Math. Anal. Appl., 282 (2003), 816–825 | DOI | MR | Zbl
[13] A. Malek, R. S. Beidokhti, “Numerical Solution for High Order Differential Equations Using a Hybrid Neural Network-Optimization Method”, Applied Mathematics and Computation, 183:1 (2006), 260–271 | DOI | MR | Zbl
[14] Y. P. Sun, “Nontrivial Solution for a Three-Point Boundary Value Problem”, Electronic Journal of Differential Equations, 111 (2004), 1–10 | MR
[15] Y. P. Sun, L. Liu, “Solvability of a Nonlinear Second-Order Three-Point Boundary Value Problem”, J. Math. Anal. Appl., 296 (2004), 265–275 | DOI | MR | Zbl
[16] Y. P. Sun, “Nontrivial Symmetric Solution of a Nonlinear Second-Order Three-Point Boundary Value Problem”, Miskolc Mathematics Notes, 10:1 (2009), 97–106 | MR | Zbl
[17] E. Twizell, “A Family of Numerical Methods for The Solution of High-Order General Initial Value Problems”, Computer Methods in Applied Mechanics and Engineering, 67:1 (1988), 15–25 | DOI | MR | Zbl
[18] H. Westergaard, Theory of Elasticity and Plasticity, John Wiley Sons, New York, 1952 | MR | Zbl
[19] X. J. Wu, Y. Wang, W. Price, “Multiple Resonances, Responses, and Parametric Instabilities in Offshore Structures”, Journal of Ship Research, 32:4 (1988), 285
[20] D. Xie, Y. Liu, C. Bai, “Green's Function and Positive Solutions of a Singular nth-Order Three-point Boundary Value Problem on Time Scales”, Electronic Journal of Qualitative Theory of Differential Equations, 38 (2009), 1–14 | MR
[21] J. Yang, Z. Wei, “Positive Solutions of nth-Order m-Point Boundary Value Problem”, Appl. Math. Comput., 202:2 (2008), 715–720 | MR | Zbl