Existence of solution for a nonlinear three-point boundary value problem
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1120-1134.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the existence of nontrivial solution for the fourth-order three-point boundary value problem given as follows \begin{gather*} u^{(4)}(t)+f(t,u(t))=0,\quad\text 01,\\ u^{'}(0)-\alpha u^{'}(\eta)=0,\quad u(0)=u^{'''}(0)=0,\quad u^{'}(1)-\beta u^{'}(\eta)=0, \end{gather*} where $\eta\in(0,1)$, $\alpha, \beta\in\mathbb{R}$, $f\in C([0,1]\times\mathbb{R},\mathbb{R})$. We give sufficient conditions that allow us to obtain the existence of a nontrivial solution. And by using the Leray–Schauder nonlinear alternative we prove the existence of at least one solution of the posed problem. As an application, we also given some examples to illustrate the results obtained.
Keywords: Green's function, Nontrivial solution, Leary-Schauder nonlinear alternative, Fixed point theorem, Boundary value problem.
@article{SEMR_2017_14_a98,
     author = {Z. Bekri and S. Benaicha},
     title = {Existence of solution for a nonlinear three-point boundary value problem},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1120--1134},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a98/}
}
TY  - JOUR
AU  - Z. Bekri
AU  - S. Benaicha
TI  - Existence of solution for a nonlinear three-point boundary value problem
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 1120
EP  - 1134
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a98/
LA  - en
ID  - SEMR_2017_14_a98
ER  - 
%0 Journal Article
%A Z. Bekri
%A S. Benaicha
%T Existence of solution for a nonlinear three-point boundary value problem
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 1120-1134
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a98/
%G en
%F SEMR_2017_14_a98
Z. Bekri; S. Benaicha. Existence of solution for a nonlinear three-point boundary value problem. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1120-1134. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a98/

[1] R. P. Agarwal, Boundary Value Problems for Higher-Order Differntial Equations, MATSCIENCE. The institute of Mathematics Science, Madras-600020, INDIA, July, 1979 | MR

[2] A. Alomari, N. R. Anakira, A. S. Bataineh, I. Hashim, Approximate Solution of Nonlinear System of BVP Arising in Fluid Flo Problem, Mathematical Problems in Engineering, 2013 | MR

[3] A. Boutayeb, A. Chetouani, “A Mini-Review of Numerical Methods for High-Order Problemsy”, International Journal of Computer Mathematics, 84:4 (2007), 563–579 | DOI | MR | Zbl

[4] S. P. Chang, Infinite Beams on an Elastic Foundation, 1965

[5] R. Cortell, “Application of The Fourth-Order Runge-Kutta Method for The Solution of High-Order General Initial Value Problems”, Computers and Structures, 49:5 (1993), 897–900 | DOI | MR | Zbl

[6] K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, 1985 | MR | Zbl

[7] P. W. Eloea, B. Ahmad, “Positive Solutions of a Nonlinear nth-Order Boundary Value Problem With Nonlocal Conditions”, Applied Mathematics Letters, 18:5 (2005), 521–527 | DOI | MR

[8] J. R. Graef, T. Moussaoui, “A Class of nth-Order Boundary Value Problems With Nonlocal Condition”, Comput. Math. Appl., 58:8 (2009), 1662–1671 | DOI | MR | Zbl

[9] S. R. Jator, “Numerical Integrators for Fourth Order Initial and Boundary Value Problems”, International Journal of Pure and Applied Mathematics, 47:4 (2008), 563–576 | MR | Zbl

[10] Y. Ji, Y. Guo, “The Existence of Contably Many Positive Solutions for Some Nonlinear nth-Order m-Point Boundary Value Problems”, Journal of Computational and Applied Mathematics, 232:2 (2009), 187–200 | DOI | MR | Zbl

[11] O. Kelesoglu, “The Solution of Fourth Order Boundary Value Problem Arising Out of The Beam-Column Theory Using Adomian Decomposition Method”, Mathematical Problems in Engineering, 2014, 649471 | MR

[12] Y. Liu, W. Ge, “Positive Solutions for (n-1, 1) Three-Point Boundary Value Problems With Coefficient That Changes Sign”, J. Math. Anal. Appl., 282 (2003), 816–825 | DOI | MR | Zbl

[13] A. Malek, R. S. Beidokhti, “Numerical Solution for High Order Differential Equations Using a Hybrid Neural Network-Optimization Method”, Applied Mathematics and Computation, 183:1 (2006), 260–271 | DOI | MR | Zbl

[14] Y. P. Sun, “Nontrivial Solution for a Three-Point Boundary Value Problem”, Electronic Journal of Differential Equations, 111 (2004), 1–10 | MR

[15] Y. P. Sun, L. Liu, “Solvability of a Nonlinear Second-Order Three-Point Boundary Value Problem”, J. Math. Anal. Appl., 296 (2004), 265–275 | DOI | MR | Zbl

[16] Y. P. Sun, “Nontrivial Symmetric Solution of a Nonlinear Second-Order Three-Point Boundary Value Problem”, Miskolc Mathematics Notes, 10:1 (2009), 97–106 | MR | Zbl

[17] E. Twizell, “A Family of Numerical Methods for The Solution of High-Order General Initial Value Problems”, Computer Methods in Applied Mechanics and Engineering, 67:1 (1988), 15–25 | DOI | MR | Zbl

[18] H. Westergaard, Theory of Elasticity and Plasticity, John Wiley Sons, New York, 1952 | MR | Zbl

[19] X. J. Wu, Y. Wang, W. Price, “Multiple Resonances, Responses, and Parametric Instabilities in Offshore Structures”, Journal of Ship Research, 32:4 (1988), 285

[20] D. Xie, Y. Liu, C. Bai, “Green's Function and Positive Solutions of a Singular nth-Order Three-point Boundary Value Problem on Time Scales”, Electronic Journal of Qualitative Theory of Differential Equations, 38 (2009), 1–14 | MR

[21] J. Yang, Z. Wei, “Positive Solutions of nth-Order m-Point Boundary Value Problem”, Appl. Math. Comput., 202:2 (2008), 715–720 | MR | Zbl