Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2017_14_a97, author = {Zh. D. Totieva}, title = {The problem of determining the coefficient of thermal expansion of the equation of thermoviscoelasticity}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1108--1119}, publisher = {mathdoc}, volume = {14}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a97/} }
TY - JOUR AU - Zh. D. Totieva TI - The problem of determining the coefficient of thermal expansion of the equation of thermoviscoelasticity JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2017 SP - 1108 EP - 1119 VL - 14 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a97/ LA - ru ID - SEMR_2017_14_a97 ER -
%0 Journal Article %A Zh. D. Totieva %T The problem of determining the coefficient of thermal expansion of the equation of thermoviscoelasticity %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2017 %P 1108-1119 %V 14 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a97/ %G ru %F SEMR_2017_14_a97
Zh. D. Totieva. The problem of determining the coefficient of thermal expansion of the equation of thermoviscoelasticity. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1108-1119. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a97/
[1] V. G. Yakhno, Inverse problems for differential equations of elasticity, Nauka, Novosibirsk, 1988 (in Russian) | MR
[2] R. Sh. Isanov, V. G. Yakhno, “Direct and inverse linearized problem for the system of differential equations of coherent thermoelasticity”, The materials of the Siberian conference on non-classical equations of mathematical physics, Novosibirsk, 1995, 49 (in Russian) | MR
[3] R. Sh. Isanov, V. G. Yakhno, “Direct and inverse problems of connected thermoelasicity”, Computerized tomography, Proceeding of the Forth International symposium (Novosibirsk, Russia, 1993), VSP, the Netherlands, Utrecht, 1995, 232–234 | MR | Zbl
[4] A. O. Vatulyan, S. A. Nesterov, “The inverse problem of thermoelasticity for functionally graded materials”, Problems of strength and plasticity, 76:4 (2014), 335–342 (in Russian)
[5] M. Grasselli, S. I. Kabanikhin, A. Lorenzi, “An inverse problem for integro-differential equations”, Siberian Mathematical Journal, 33:1 (1992), 58–68 | MR
[6] A. Lorenzi, E. Paparoni, “Direct and inverse problems in the theory of materials with memory”, Ren. Sem. Math. Univ., 87 (1992), 105–138 | MR | Zbl
[7] A. Lorenzi, V. I. Priimenko, “Identification problems related to electro-magneto-elastic interactions”, J. Inv. Ill-posed Problems, 4:2 (1996), 115–143 | DOI | MR | Zbl
[8] J. Janno, L. von Wolfersdorf, “Inverse problems for identification of memory kernels in viscoelasticity”, Math. methods in Appl. Sciences, 20:4 (1997), 291–314 | 3.0.CO;2-W class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[9] A. L. Bukhgeim, N. Kalinina, V. B. Kardakov, “Two methods to the inverse problem of determining memory”, Siberian Mathematical Journal, 41:4 (2000), 767–776 (in Russian) | DOI | MR
[10] D. K. Durdiev, Zh. D. Totieva, “The problem of determining a one-dimensional kernel of viscoelasticity equation”, Siberian Journal of Industrial Mathematics, 16:2 (2013), 72–82 (in Russian) | MR | Zbl
[11] D. K. Durdiev, “Inverse problem for determining two coefficients in an integrodifferential wave equation”, Siberian Journal of Industrial Mathematics, 12:3 (2009), 28–40 | MR | Zbl
[12] D. K. Durdiev, Zh. Sh. Safarov, “Inverse problem of determining the one-dimensional kernel of the viscoelasticity equation in a bounded domain”, Mathematical Notes, 97:5–6 (2015), 855–867 (in Russian) | MR | Zbl
[13] D. K. Durdiev, “Inverse problem for the system of thermoelasticity equations in vertically inhomogeneous incoherent environment with memory”, Dif. equations, 45:9 (2009), 1229–1236 (in Russian) | MR | Zbl
[14] Zh. D. Tuaeva, “The multidimensional mathematical model of seismic with memory”, "Studies of dif. equations and math. modeling" (Vladikavkaz Scientific Center, Vladikavkaz), Mathematical forum, 1, no. 2, 2008, 297–306 (in Russian)
[15] A. D. Kovalenko, Thermoelasticity, Vyscha Shkola, Kiev, 1975 (in Russian)