The problem of determining the coefficient of thermal expansion of the equation of thermoviscoelasticity
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1108-1119.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of finding the thermal expansion coefficient $\alpha(z),\ z\in [0,Z],$ occurring in the system of integro-differential termoviscoelasticity equations. The medium density and the Lame parameters are assumed to be function of one variable. The integrand $h(t),\ t\in [0; T]$ is known. The inverse problem is replaced by the equivalent integral equation for unknown functions. The theorem of unique solvability is proved and the stability estimate of solving the inverse problem is obtained.
Keywords: inverse problem, integro-differential equations, stability
Mots-clés : thermal expansion coefficient, kernel.
@article{SEMR_2017_14_a97,
     author = {Zh. D. Totieva},
     title = {The problem of determining the coefficient of thermal expansion of the equation of thermoviscoelasticity},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1108--1119},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a97/}
}
TY  - JOUR
AU  - Zh. D. Totieva
TI  - The problem of determining the coefficient of thermal expansion of the equation of thermoviscoelasticity
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 1108
EP  - 1119
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a97/
LA  - ru
ID  - SEMR_2017_14_a97
ER  - 
%0 Journal Article
%A Zh. D. Totieva
%T The problem of determining the coefficient of thermal expansion of the equation of thermoviscoelasticity
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 1108-1119
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a97/
%G ru
%F SEMR_2017_14_a97
Zh. D. Totieva. The problem of determining the coefficient of thermal expansion of the equation of thermoviscoelasticity. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1108-1119. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a97/

[1] V. G. Yakhno, Inverse problems for differential equations of elasticity, Nauka, Novosibirsk, 1988 (in Russian) | MR

[2] R. Sh. Isanov, V. G. Yakhno, “Direct and inverse linearized problem for the system of differential equations of coherent thermoelasticity”, The materials of the Siberian conference on non-classical equations of mathematical physics, Novosibirsk, 1995, 49 (in Russian) | MR

[3] R. Sh. Isanov, V. G. Yakhno, “Direct and inverse problems of connected thermoelasicity”, Computerized tomography, Proceeding of the Forth International symposium (Novosibirsk, Russia, 1993), VSP, the Netherlands, Utrecht, 1995, 232–234 | MR | Zbl

[4] A. O. Vatulyan, S. A. Nesterov, “The inverse problem of thermoelasticity for functionally graded materials”, Problems of strength and plasticity, 76:4 (2014), 335–342 (in Russian)

[5] M. Grasselli, S. I. Kabanikhin, A. Lorenzi, “An inverse problem for integro-differential equations”, Siberian Mathematical Journal, 33:1 (1992), 58–68 | MR

[6] A. Lorenzi, E. Paparoni, “Direct and inverse problems in the theory of materials with memory”, Ren. Sem. Math. Univ., 87 (1992), 105–138 | MR | Zbl

[7] A. Lorenzi, V. I. Priimenko, “Identification problems related to electro-magneto-elastic interactions”, J. Inv. Ill-posed Problems, 4:2 (1996), 115–143 | DOI | MR | Zbl

[8] J. Janno, L. von Wolfersdorf, “Inverse problems for identification of memory kernels in viscoelasticity”, Math. methods in Appl. Sciences, 20:4 (1997), 291–314 | 3.0.CO;2-W class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[9] A. L. Bukhgeim, N. Kalinina, V. B. Kardakov, “Two methods to the inverse problem of determining memory”, Siberian Mathematical Journal, 41:4 (2000), 767–776 (in Russian) | DOI | MR

[10] D. K. Durdiev, Zh. D. Totieva, “The problem of determining a one-dimensional kernel of viscoelasticity equation”, Siberian Journal of Industrial Mathematics, 16:2 (2013), 72–82 (in Russian) | MR | Zbl

[11] D. K. Durdiev, “Inverse problem for determining two coefficients in an integrodifferential wave equation”, Siberian Journal of Industrial Mathematics, 12:3 (2009), 28–40 | MR | Zbl

[12] D. K. Durdiev, Zh. Sh. Safarov, “Inverse problem of determining the one-dimensional kernel of the viscoelasticity equation in a bounded domain”, Mathematical Notes, 97:5–6 (2015), 855–867 (in Russian) | MR | Zbl

[13] D. K. Durdiev, “Inverse problem for the system of thermoelasticity equations in vertically inhomogeneous incoherent environment with memory”, Dif. equations, 45:9 (2009), 1229–1236 (in Russian) | MR | Zbl

[14] Zh. D. Tuaeva, “The multidimensional mathematical model of seismic with memory”, "Studies of dif. equations and math. modeling" (Vladikavkaz Scientific Center, Vladikavkaz), Mathematical forum, 1, no. 2, 2008, 297–306 (in Russian)

[15] A. D. Kovalenko, Thermoelasticity, Vyscha Shkola, Kiev, 1975 (in Russian)