Explicit expression for a first integral for some classes of two-dimensional differential systems
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 903-913

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we are interested in studying the existence of first integrals and then the trajectories for classes of two-dimensional differential systems of the forms \begin{equation*} \left\{ \begin{array}{l} x^{\prime }=\frac{P\left( x,y\right) ^{\alpha }}{T\left( x,y\right) ^{\beta } }+x\frac{R\left( x,y\right) ^{\gamma }}{S\left( x,y\right) ^{\delta }}, \\ y^{\prime }=\frac{Q\left( x,y\right) ^{\alpha }}{K\left( x,y\right) ^{\beta } }+y\frac{R\left( x,y\right) ^{\gamma }}{S\left( x,y\right) ^{\delta }}, \end{array} \right. \end{equation*} and \begin{equation*} \left\{ \begin{array}{l} x^{\prime }=x\left( \frac{P\left( x,y\right) ^{\alpha }}{T\left( x,y\right) ^{\beta }}+\frac{R\left( x,y\right) ^{\gamma }}{S\left( x,y\right) ^{\delta } }\right) , \\ y^{\prime }=y\left( \frac{Q\left( x,y\right) ^{\alpha }}{K\left( x,y\right) ^{\beta }}+\frac{R\left( x,y\right) ^{\gamma }}{S\left( x,y\right) ^{\delta } }\right) , \end{array} \right. \end{equation*} where $a,$ $b,$ $n,$ $m$ are positive integers, $\alpha ,$ $\beta ,$ $\gamma ,$ $\delta \in \mathbb{Q} $ and $P\left( x,y\right) ,$ $Q\left( x,y\right) ,$ $R\left( x,y\right) ,$ $ T\left( x,y\right) ,$ $K\left( x,y\right) ,$ $S\left( x,y\right) $ are homogeneous polynomials of degree $n,$ $n,$ $m,$ $a,$ $a,$ $b$ respectively. Concrete examples exhibiting the applicability of our result are introduced.
Keywords: autonomous differential system, Kolmogorov system, first integral, trajectories, Hilbert 16th problem.
@article{SEMR_2017_14_a96,
     author = {R. Boukoucha},
     title = {Explicit expression for a first integral for some classes of two-dimensional differential systems},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {903--913},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a96/}
}
TY  - JOUR
AU  - R. Boukoucha
TI  - Explicit expression for a first integral for some classes of two-dimensional differential systems
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 903
EP  - 913
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a96/
LA  - en
ID  - SEMR_2017_14_a96
ER  - 
%0 Journal Article
%A R. Boukoucha
%T Explicit expression for a first integral for some classes of two-dimensional differential systems
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 903-913
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a96/
%G en
%F SEMR_2017_14_a96
R. Boukoucha. Explicit expression for a first integral for some classes of two-dimensional differential systems. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 903-913. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a96/