Explicit expression for a first integral for some classes of two-dimensional differential systems
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 903-913
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we are interested in studying
the existence of first integrals and then the trajectories for
classes of two-dimensional differential
systems of the forms
\begin{equation*}
\left\{
\begin{array}{l}
x^{\prime }=\frac{P\left( x,y\right) ^{\alpha }}{T\left( x,y\right) ^{\beta }
}+x\frac{R\left( x,y\right) ^{\gamma }}{S\left( x,y\right) ^{\delta }}, \\
y^{\prime }=\frac{Q\left( x,y\right) ^{\alpha }}{K\left( x,y\right) ^{\beta }
}+y\frac{R\left( x,y\right) ^{\gamma }}{S\left( x,y\right) ^{\delta }},
\end{array}
\right.
\end{equation*}
and
\begin{equation*}
\left\{
\begin{array}{l}
x^{\prime }=x\left( \frac{P\left( x,y\right) ^{\alpha }}{T\left(
x,y\right)
^{\beta }}+\frac{R\left( x,y\right) ^{\gamma }}{S\left( x,y\right) ^{\delta }
}\right) , \\
y^{\prime }=y\left( \frac{Q\left( x,y\right) ^{\alpha }}{K\left(
x,y\right)
^{\beta }}+\frac{R\left( x,y\right) ^{\gamma }}{S\left( x,y\right) ^{\delta }
}\right) ,
\end{array}
\right.
\end{equation*}
where $a,$ $b,$ $n,$ $m$ are positive integers, $\alpha ,$ $\beta ,$
$\gamma ,$ $\delta \in
\mathbb{Q}
$ and $P\left( x,y\right) ,$ $Q\left( x,y\right) ,$ $R\left( x,y\right) ,$ $
T\left( x,y\right) ,$ $K\left( x,y\right) ,$ $S\left( x,y\right) $
are homogeneous polynomials of degree $n,$ $n,$ $m,$ $a,$ $a,$ $b$
respectively. Concrete examples exhibiting the applicability of our
result are introduced.
Keywords:
autonomous differential system, Kolmogorov system, first integral, trajectories, Hilbert 16th problem.
@article{SEMR_2017_14_a96,
author = {R. Boukoucha},
title = {Explicit expression for a first integral for some classes of two-dimensional differential systems},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {903--913},
publisher = {mathdoc},
volume = {14},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a96/}
}
TY - JOUR AU - R. Boukoucha TI - Explicit expression for a first integral for some classes of two-dimensional differential systems JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2017 SP - 903 EP - 913 VL - 14 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a96/ LA - en ID - SEMR_2017_14_a96 ER -
R. Boukoucha. Explicit expression for a first integral for some classes of two-dimensional differential systems. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 903-913. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a96/