Dynamics of the cubic Darboux systems
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 889-902
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the local and global behavior of the trajectories of the differential systems of the form $\dot x= x+p_3(x,y), \ \dot y=y+q_3(x,y)$ where $p_3(x,y), q_3(x,y)$ are relatively prime homogeneous cubic polynomials.
Keywords:
polynomial systems, singular points,
Poincaré equator
Mots-clés : phase portraits.
Mots-clés : phase portraits.
@article{SEMR_2017_14_a95,
author = {E. P. Volokitin and V. M. Cheresiz},
title = {Dynamics of the cubic {Darboux} systems},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {889--902},
publisher = {mathdoc},
volume = {14},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a95/}
}
E. P. Volokitin; V. M. Cheresiz. Dynamics of the cubic Darboux systems. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 889-902. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a95/