Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2017_14_a95, author = {E. P. Volokitin and V. M. Cheresiz}, title = {Dynamics of the cubic {Darboux} systems}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {889--902}, publisher = {mathdoc}, volume = {14}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a95/} }
E. P. Volokitin; V. M. Cheresiz. Dynamics of the cubic Darboux systems. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 889-902. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a95/
[1] Bendjeddou A., Llibre J., Salhi T., “Dynamics of the polynomial differential systems with homogeneous nonlinearities and a star node”, J. Diff. Equ., 254:8 (2013), 3530–3537 | DOI | MR | Zbl
[2] Volokitin E. P., Cheresiz V. M., “Qualitative investigation of plane polynomial Darboux-type systems”, Sib. Ĕlectron. Mat. Izv., 13 (2016), 1170–1186 | MR | Zbl
[3] Berlinskiĭ, “A qualitative investigation of the differential equation $dy/dx=(y+a_0x^2+a_1 xy+a_2 y^2)/(x+b_0 x^2+b_1xy+b_2y^2$”, Differencial'nye Uravneuija, 2 (1966), 353–360 (Russian) | MR
[4] Yan Qian Ye, et al., Theory of Limit Cycles, Trans. Math. Monogr., 66, Amer. Math. Soc., 1986 | MR | Zbl
[5] Cima A., Llibre J., “Algebraic and topological classification of the homogeneous cubic vector fields in the plane”, J. Math. Anal. Appl., 147:2 (1990), 420–448 | DOI | MR | Zbl
[6] Bautin N. N., Leontovich E. A., Metody i priemy kachestvennogo issledovaniya dinamicheskikh sistem na ploskosti, With an English summary, Second edition, Nauka, M., 1990 (Russian) | MR | Zbl
[7] Andronov A. A., et al., Kachesnvennaya teoriya dinamicheskhikh sistem vtorogo poryadka, Nauka, M., 1966 (Russian) | MR
[8] Enrique A. González Velasco, “Generic propeties of polynomial vector fields at infinity”, Trans. Amer. Math. Soc., 143:1 (1969), 201–222 | MR
[9] Azamov A., Suvanov Sh., Tilavov A., “Studing of behavior at infinity of vector fields on Poincaré's sphere”, Qual. Theory Dyn. Sys., 15:1 (2016), 211–220 | DOI | MR | Zbl
[10] Leontovič E., Ma\u{i}er A., “On trajectories determing the qualitative structure of the separation of the sphere into trajectories”, Dokl. Akad. Nauk SSSR, 14 (1937), 251–254 (Russian)
[11] Buzzi C. A., Llibre J., Medrado J. C. R., “Phase portraits of reversible linear differential systems with cubic homogeneous polynomial nonlinearities having a non-degenerate center at the origin”, Qual. Theory Dyn. Syst., 7:2 (2009), 369–403 | DOI | MR | Zbl
[12] Markus L., “Global structure of ordinary differential equations in the plane”, Trans. Amer. Math. Soc., 76 (1954), 127–148 | DOI | MR | Zbl
[13] Leontovič E., Ma\u{i}er A., “On a scheme determing the topological structure of the separation of trajectories”, Dokl. Akad. Nauk SSSR (N.S.), 103 (1955), 557–560 (Russian) | MR | Zbl
[14] Neumann D. A., “Classification of continuous flows on 2-manifolds”, Proc. Amer. Math. Soc., 48:1 (1975), 73–81 | DOI | MR | Zbl
[15] Bujac C., Llibre J., Vulpe N., “First integrals and phase portraits of planar polynomial linear differential cubic systems with the maximum number of invariant straight lines”, Qual. Theory Dyn. Syst., 15:2 (2016), 327–348 | DOI | MR | Zbl