Dynamics of the cubic Darboux systems
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 889-902

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the local and global behavior of the trajectories of the differential systems of the form $\dot x= x+p_3(x,y), \ \dot y=y+q_3(x,y)$ where $p_3(x,y), q_3(x,y)$ are relatively prime homogeneous cubic polynomials.
Keywords: polynomial systems, singular points, Poincaré equator
Mots-clés : phase portraits.
@article{SEMR_2017_14_a95,
     author = {E. P. Volokitin and V. M. Cheresiz},
     title = {Dynamics of the cubic {Darboux} systems},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {889--902},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a95/}
}
TY  - JOUR
AU  - E. P. Volokitin
AU  - V. M. Cheresiz
TI  - Dynamics of the cubic Darboux systems
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 889
EP  - 902
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a95/
LA  - ru
ID  - SEMR_2017_14_a95
ER  - 
%0 Journal Article
%A E. P. Volokitin
%A V. M. Cheresiz
%T Dynamics of the cubic Darboux systems
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 889-902
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a95/
%G ru
%F SEMR_2017_14_a95
E. P. Volokitin; V. M. Cheresiz. Dynamics of the cubic Darboux systems. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 889-902. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a95/