Dynamics of the cubic Darboux systems
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 889-902.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the local and global behavior of the trajectories of the differential systems of the form $\dot x= x+p_3(x,y), \ \dot y=y+q_3(x,y)$ where $p_3(x,y), q_3(x,y)$ are relatively prime homogeneous cubic polynomials.
Keywords: polynomial systems, singular points, Poincaré equator
Mots-clés : phase portraits.
@article{SEMR_2017_14_a95,
     author = {E. P. Volokitin and V. M. Cheresiz},
     title = {Dynamics of the cubic {Darboux} systems},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {889--902},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a95/}
}
TY  - JOUR
AU  - E. P. Volokitin
AU  - V. M. Cheresiz
TI  - Dynamics of the cubic Darboux systems
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 889
EP  - 902
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a95/
LA  - ru
ID  - SEMR_2017_14_a95
ER  - 
%0 Journal Article
%A E. P. Volokitin
%A V. M. Cheresiz
%T Dynamics of the cubic Darboux systems
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 889-902
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a95/
%G ru
%F SEMR_2017_14_a95
E. P. Volokitin; V. M. Cheresiz. Dynamics of the cubic Darboux systems. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 889-902. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a95/

[1] Bendjeddou A., Llibre J., Salhi T., “Dynamics of the polynomial differential systems with homogeneous nonlinearities and a star node”, J. Diff. Equ., 254:8 (2013), 3530–3537 | DOI | MR | Zbl

[2] Volokitin E. P., Cheresiz V. M., “Qualitative investigation of plane polynomial Darboux-type systems”, Sib. Ĕlectron. Mat. Izv., 13 (2016), 1170–1186 | MR | Zbl

[3] Berlinskiĭ, “A qualitative investigation of the differential equation $dy/dx=(y+a_0x^2+a_1 xy+a_2 y^2)/(x+b_0 x^2+b_1xy+b_2y^2$”, Differencial'nye Uravneuija, 2 (1966), 353–360 (Russian) | MR

[4] Yan Qian Ye, et al., Theory of Limit Cycles, Trans. Math. Monogr., 66, Amer. Math. Soc., 1986 | MR | Zbl

[5] Cima A., Llibre J., “Algebraic and topological classification of the homogeneous cubic vector fields in the plane”, J. Math. Anal. Appl., 147:2 (1990), 420–448 | DOI | MR | Zbl

[6] Bautin N. N., Leontovich E. A., Metody i priemy kachestvennogo issledovaniya dinamicheskikh sistem na ploskosti, With an English summary, Second edition, Nauka, M., 1990 (Russian) | MR | Zbl

[7] Andronov A. A., et al., Kachesnvennaya teoriya dinamicheskhikh sistem vtorogo poryadka, Nauka, M., 1966 (Russian) | MR

[8] Enrique A. González Velasco, “Generic propeties of polynomial vector fields at infinity”, Trans. Amer. Math. Soc., 143:1 (1969), 201–222 | MR

[9] Azamov A., Suvanov Sh., Tilavov A., “Studing of behavior at infinity of vector fields on Poincaré's sphere”, Qual. Theory Dyn. Sys., 15:1 (2016), 211–220 | DOI | MR | Zbl

[10] Leontovič E., Ma\u{i}er A., “On trajectories determing the qualitative structure of the separation of the sphere into trajectories”, Dokl. Akad. Nauk SSSR, 14 (1937), 251–254 (Russian)

[11] Buzzi C. A., Llibre J., Medrado J. C. R., “Phase portraits of reversible linear differential systems with cubic homogeneous polynomial nonlinearities having a non-degenerate center at the origin”, Qual. Theory Dyn. Syst., 7:2 (2009), 369–403 | DOI | MR | Zbl

[12] Markus L., “Global structure of ordinary differential equations in the plane”, Trans. Amer. Math. Soc., 76 (1954), 127–148 | DOI | MR | Zbl

[13] Leontovič E., Ma\u{i}er A., “On a scheme determing the topological structure of the separation of trajectories”, Dokl. Akad. Nauk SSSR (N.S.), 103 (1955), 557–560 (Russian) | MR | Zbl

[14] Neumann D. A., “Classification of continuous flows on 2-manifolds”, Proc. Amer. Math. Soc., 48:1 (1975), 73–81 | DOI | MR | Zbl

[15] Bujac C., Llibre J., Vulpe N., “First integrals and phase portraits of planar polynomial linear differential cubic systems with the maximum number of invariant straight lines”, Qual. Theory Dyn. Syst., 15:2 (2016), 327–348 | DOI | MR | Zbl