The steady problem of the motion of a rigid ball in a Stokes--Poiseuille flow: differentiability of the solution with respect to the ball position
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 864-876.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with the steady problem of the motion of a rigid body in a viscous incompressible fluid that fills a cylindrical domain. The fluid flow is governed by the Stokes equation and tends to Poiseuille flow at infinity. The body is a ball that moves according to the laws of classical mechanics. The unique solvability of this problem was proved in an earlier work of the authors. Here, the differentiability of the solution in the function space $L^2$ with respect to the position of the ball is established.
Keywords: rigid body, cylindrical pipe, steady motion.
Mots-clés : viscous fluid
@article{SEMR_2017_14_a94,
     author = {A. A. Mestnikova and V. N. Starovoitov and B. N. Starovoitova},
     title = {The steady problem of the motion of a rigid ball in a {Stokes--Poiseuille} flow: differentiability of the solution with respect to the ball position},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {864--876},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a94/}
}
TY  - JOUR
AU  - A. A. Mestnikova
AU  - V. N. Starovoitov
AU  - B. N. Starovoitova
TI  - The steady problem of the motion of a rigid ball in a Stokes--Poiseuille flow: differentiability of the solution with respect to the ball position
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 864
EP  - 876
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a94/
LA  - en
ID  - SEMR_2017_14_a94
ER  - 
%0 Journal Article
%A A. A. Mestnikova
%A V. N. Starovoitov
%A B. N. Starovoitova
%T The steady problem of the motion of a rigid ball in a Stokes--Poiseuille flow: differentiability of the solution with respect to the ball position
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 864-876
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a94/
%G en
%F SEMR_2017_14_a94
A. A. Mestnikova; V. N. Starovoitov; B. N. Starovoitova. The steady problem of the motion of a rigid ball in a Stokes--Poiseuille flow: differentiability of the solution with respect to the ball position. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 864-876. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a94/

[1] V. N. Starovoitov, “Steady Solutions to the problem of a ball dynamics in a Stokes–Poiseuille flow”, Journal of Applied and Industrial Mathematics, 9:4 (2015), 588–597 | DOI | MR | Zbl

[2] K.-H. Hoffmann, V. N. Starovoitov, “On a motion of a solid body in a viscous fluid. Two-dimensional case”, Advances in Mathematical Sciences and Applications, 9:2 (1999), 633–648 | MR | Zbl

[3] K.-H. Hoffmann, V. N. Starovoitov, “Zur Bewegung einer Kugel in einer zähen Flüssigkeit”, Documenta Mathematica, 5 (2000), 15–21 | MR | Zbl

[4] V. N. Starovoitov, Non-regular problems of Hydrodynamics, Doctor of Sciences Thesis, Novosibirsk, 2000

[5] V. N. Starovoitov, “Behavior of a rigid body in an incompressible viscous fluid near a boundary”, Free boundary problems. Theory and Applications, International Series of Numerical Mathematics, 147, Birkhäuser, Basel, 2003, 313–327 | MR | Zbl

[6] P. I. Plotnikov, V. N. Starovoitov, B. N. Starovoitova, “Properties of the solution of a variational problem concerning the motion of a rigid body in a Stokes fluid”, Doklady Mathematics, 86:2 (2012), 615–621 | DOI | MR | Zbl

[7] P. I. Plotnikov, J. Sokołowski, Compressible Navier–Stokes equations. Theory and shape optimization, Springer, Basel, 2012 | MR | Zbl

[8] S. Schmidt, V. Schulz, “Shape derivatives for general objective functions and the incompressible Navier–Stokes equations”, Control and Cybernetics, 39:3 (2010), 677–713 | MR | Zbl

[9] G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems, Springer Science Business Media, 2011 | MR | Zbl