Genuinely nonlinear forward-backward ultra-parabolic equations
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 710-731.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we have proved the existence and uniqueness of entropy solutions to the Dirichlet problem for genuinely nonlinear forward-backward ultra-parabolic equations. We have used a kinetic formulation of entropy solutions which enables also to prove the existence of their traces in the $L^1$ sense.
Keywords: entropy solution, forward-backward ultra-parabolic equation, kinetic formulation.
@article{SEMR_2017_14_a92,
     author = {I. V. Kuznetsov},
     title = {Genuinely nonlinear forward-backward ultra-parabolic equations},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {710--731},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a92/}
}
TY  - JOUR
AU  - I. V. Kuznetsov
TI  - Genuinely nonlinear forward-backward ultra-parabolic equations
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 710
EP  - 731
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a92/
LA  - en
ID  - SEMR_2017_14_a92
ER  - 
%0 Journal Article
%A I. V. Kuznetsov
%T Genuinely nonlinear forward-backward ultra-parabolic equations
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 710-731
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a92/
%G en
%F SEMR_2017_14_a92
I. V. Kuznetsov. Genuinely nonlinear forward-backward ultra-parabolic equations. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 710-731. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a92/

[1] J. Aleksić, D. Mitrović, “Strong traces for averaged solutions of heterogeneous ultra-parabolic transport equations”, Journal of Hyperbolic Differential Equations, 10 (2013), 659–676 | DOI | MR | Zbl

[2] S.N. Antontsev, I.V. Kuznetsov, “Singular perturbations of forward-backward $p$-parabolic equations”, Journal of Elliptic and Parabolic Equations, 2 (2016), 357–370 | DOI | MR

[3] A. Ashyralyev, S. Y{\i}lmaz, “An approximation of ultra-parabolic equations”, Abstract and Applied Analysis, 2012 (2012), 840621, 14 pp. | MR | Zbl

[4] G. Avalishvili, M. Avalishvili, “Nonclassical problem for ultra-parabolic equation in abstract spaces”, Journal of Function Spaces, 2016 (2016), 5687920, 15 pp. | DOI | MR | Zbl

[5] M. Borsuk, V. Kondratiev, Elliptic Boundary Value Problems of Second Order in Piecewise Smooth Domains, Elsevier, 2006 | MR | Zbl

[6] J. Carrillo, “Entropy solutions for nonlinear degenerate problems”, Archive for Rational Mechanics and Analysis, 147 (1999), 269–361 | DOI | MR | Zbl

[7] G.M. Coclite, K.H. Karlsen, Y.-S. Kwon, “Initial-boundary value problems for conservation laws with source terms and the Degasperis-Procesi equation”, Journal of Functional Analysis, 257 (2009), 3823–3857 | DOI | MR | Zbl

[8] S. Hwang, A.E. Tzavaras, “Kinetic decomposition of approximate solutions to conservation laws: Application to relaxation and diffusion-dispersion approximations”, Communications in Partial Differential Equations, 27:5–6 (2002), 1229–1254 | DOI | MR | Zbl

[9] M. Jleli, M. Kirane, B. Samet, “Nonexistence of global solutions for a class of two-time nonlinear evolution equations”, Computers and Mathematics with Applications, 68 (2014), 2028–2035 | DOI | MR

[10] S. Kerbal, M. Kirane, “Nonexistence results for the Cauchy problem for nonlinear ultra-parabolic equations”, Abstract and Applied Analysis, 2011 (2011), 149091, 10 pp. | DOI | MR | Zbl

[11] C.I. Kondo, P.G. LeFloch, “Measure-valued solutions and well-posedness of multi-dimensional conservation laws in a bounded domain”, Portugaliae Mathematica (Nova Série), 58 (2001), 171–193 | MR | Zbl

[12] A.I. Kozhanov, “On the solvability of boundary value problems for quasilinear ultra-parabolic equations in some mathematical models of the dynamics of biological systems”, Journal of Applied and Industrial Mathematics, 4 (2010), 512–525 | DOI | MR

[13] I.V. Kuznetsov, “Entropy solutions of differential equations with variable parabolicity direction”, Journal of Mathematical Sciences, 202 (2014), 91–112 | DOI | MR

[14] I.V. Kuznetsov, “Traces of entropy solutions to second order forward-backward parabolic equation”, Journal of Mathematical Sciences, 211 (2015), 767–788 | DOI | MR

[15] I.V. Kuznetsov, “Kinetic formulation of forward-backward parabolic equations”, Siberian Electronic Mathematical Reports, 13 (2016), 930–949 | MR

[16] Y.-S. Kwon, A. Vasseur, “Strong traces for solutions to scalar conservation laws with general flux”, Archive for Rational Mechanics and Analysis, 185 (2007), 495–513 | DOI | MR | Zbl

[17] Y.-S. Kwon, “Well-posedness for entropy solution of multidimensional scalar conservation laws with strong boundary condition”, Journal of Mathematical Analysis and Applications, 340 (2008), 543–549 | DOI | MR | Zbl

[18] O.A. Ladyzhenskaya, N.N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Nauka, M., 1973 (in Russian) | MR | Zbl

[19] M. Lazar, D. Mitrovic, “Velocity averaging — a general framework”, Dynamics of Partial Differential Equations, 9 (2012), 239–260 | DOI | MR | Zbl

[20] Y. Li, Q. Wang, “Homogeneous Dirichlet problems for quasilinear anisotropic degenerate parabolic-hyperbolic equations”, Journal of Differential Equations, 252 (2012), 4719–4741 | DOI | MR | Zbl

[21] P.-L. Lions, B. Perthame, E. Tadmor, “A kinetic formulation of multidimensional scalar conservation laws and related equations”, Journal of the American Mathematical Society, 7 (1994), 169–191 | DOI | MR | Zbl

[22] E.Yu. Panov, “Existence of strong traces for generalized solutions of multidimensional scalar conservation laws”, Journal of Hyperbolic Differential Equations, 2 (2005), 885–908 | DOI | MR | Zbl

[23] E.Yu. Panov, “Existence of strong traces for quasi-solutions of multidimensional scalar conservation laws”, Journal of Hyperbolic Differential Equations, 4 (2007), 729–770 | DOI | MR | Zbl

[24] E.Yu. Panov, “Ultra-parabolic equations with rough coefficients. Entropy solutions and strong precompactness property”, Journal of Mathematical Sciences, 159 (2009), 180–228 | DOI | MR | Zbl

[25] E.Yu. Panov, “Ultra-parabolic H-measures and compensated compactness”, Annales de l'Institut Henri Poincaré (C) Analyse Non Linéaire, 28 (2011), 47–62 | DOI | MR | Zbl

[26] B. Perthame, “Uniqueness and error estimates in first order quasilinear conservation laws via the kinetic entropy defect measure”, Journal de Mathématiques Pures et Appliquées, 77 (1998), 1055–1064 | DOI | MR | Zbl

[27] B. Perthame, Kinetic Formulation of Conservation Laws, Oxford University Press, Oxford, 2002 | MR | Zbl

[28] P.I. Plotnikov, S.A. Sazhenkov, “Kinetic formulation for the Graetz-Nusselt ultra-parabolic equation”, Journal of Mathematical Analysis and Applications, 304 (2005), 703–724 | DOI | MR | Zbl

[29] S.A. Sazhenkov, “The genuinely nonlinear Graetz-Nusselt ultra-parabolic equation”, Siberian Mathematical Journal, 47 (2006), 355–375 | DOI | MR | Zbl

[30] G. Vallet, “Dirichlet problem for a degenerated hyperbolic-parabolic equation”, Advances in Mathematical Sciences and Applications, 15 (2005), 423–450 | MR | Zbl

[31] A. Vasseur, “Strong traces for solutions of multidimensional scalar conservation laws”, Archive for Rational Mechanics and Analysis, 160 (2001), 181–193 | DOI | MR | Zbl

[32] Z. Wang, Y. Li, “The homogeneous Dirichlet problem for quasilinear anisotropic degenerate parabolic-hyperbolic equation with $L^p$ initial value”, Acta Mathematica Scientia, 32 (2012), 1727–1742 | DOI | MR | Zbl

[33] H. Zhan, “The entropy solution of a hyperbolic-parabolic mixed type equation”, SpringerPlus, 5:1811 (2016), 1–13 | MR