Genuinely nonlinear forward-backward ultra-parabolic equations
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 710-731

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we have proved the existence and uniqueness of entropy solutions to the Dirichlet problem for genuinely nonlinear forward-backward ultra-parabolic equations. We have used a kinetic formulation of entropy solutions which enables also to prove the existence of their traces in the $L^1$ sense.
Keywords: entropy solution, forward-backward ultra-parabolic equation, kinetic formulation.
@article{SEMR_2017_14_a92,
     author = {I. V. Kuznetsov},
     title = {Genuinely nonlinear forward-backward ultra-parabolic equations},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {710--731},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a92/}
}
TY  - JOUR
AU  - I. V. Kuznetsov
TI  - Genuinely nonlinear forward-backward ultra-parabolic equations
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 710
EP  - 731
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a92/
LA  - en
ID  - SEMR_2017_14_a92
ER  - 
%0 Journal Article
%A I. V. Kuznetsov
%T Genuinely nonlinear forward-backward ultra-parabolic equations
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 710-731
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a92/
%G en
%F SEMR_2017_14_a92
I. V. Kuznetsov. Genuinely nonlinear forward-backward ultra-parabolic equations. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 710-731. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a92/