Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2017_14_a91, author = {A. M. Khludnev and T. S. Popova}, title = {On crack propagations in elastic bodies with thin inclusions}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {586--599}, publisher = {mathdoc}, volume = {14}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a91/} }
TY - JOUR AU - A. M. Khludnev AU - T. S. Popova TI - On crack propagations in elastic bodies with thin inclusions JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2017 SP - 586 EP - 599 VL - 14 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a91/ LA - en ID - SEMR_2017_14_a91 ER -
A. M. Khludnev; T. S. Popova. On crack propagations in elastic bodies with thin inclusions. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 586-599. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a91/
[1] R. V. Goldstein, E. I. Shifrin, P. S. Shushpannikov, “Application of invariant integrals to the problems of defect identification”, Int. J. Fracture, 147 (2007), 45–54 | DOI | Zbl
[2] P. Hild, A. Munch, Y. Ousset, “On the control of crack growth in elastic media”, Comptes Rendus Mecanique, 336 (2008), 422–427 | DOI | MR | Zbl
[3] H. Itou, A.M. Khludnev, “On delaminated thin Timoshenko inclusions inside elastic bodies”, Math. Meth. Appl. Sciences, 39 (2016), 4980–4993 | DOI | MR | Zbl
[4] A. M. Khludnev, V.A. Kovtunenko, Analysis of cracks in solids, WIT Press, Southampton–Boston, 2000
[5] A.M. Khludnev, Elasticity problems in non-smooth domains, Fizmatlit, M., 2010
[6] A. M. Khludnev, G. Leugering, M. Specovius-Neugebauer, “Optimal control of inclusion and crack shapes in elastic bodies”, J. Opt. Theory Appl., 155 (2012), 54–78 | DOI | MR | Zbl
[7] A. M. Khludnev, G. Leugering, “Optimal control of cracks in elastic bodies with thin rigid inclusions”, Z. Angew. Math. Mech., 91 (2011), 125–137 | DOI | MR | Zbl
[8] A. M. Khludnev, “Optimal control of crack growth in elastic body with inclusions”, European Journal of Mechanics – A/Solids, 29 (2010), 392–399 | DOI | MR
[9] A. M. Khludnev, “Shape control of thin rigid inclusions and cracks in elastic bodies”, Arch. Appl. Mech., 83 (2013), 1493–1509 | DOI | Zbl
[10] A. M. Khludnev, G. Leugering, “Delaminated thin elastic inclusion inside elastic bodies”, Mathematics and Mechanics of Complex Systems, 2 (2014), 1–21 | DOI | MR | Zbl
[11] A. M. Khludnev, G. Leugering, “On Timoshenko thin elastic inclusions inside elastic bodies”, Mathematics and Mechanics of Solids, 20 (2015), 495–511 | DOI | MR | Zbl
[12] V. A. Kovtunenko, “Sensitivity of interfacial cracks to non-linear crack front perturbations”, Z. Angev. Math. Mech., 82 (2002), 387–398 | 3.0.CO;2-I class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[13] V. A. Kovtunenko, “Shape sensitivity of curvilinear cracks on interface to non-linear perturbations”, Z. Angew. Math. Phys., 54 (2003), 410–423 | DOI | MR | Zbl
[14] V. A. Kovtunenko, K. Kunisch, “Problem of crack perturbation based on level sets and velocities”, Z. Angew. Math. Mech., 87 (2007), 809–830 | DOI | MR | Zbl
[15] V.A. Kozlov, V.G. Maz'ya, A.B. Movchan, Asymptotic analysis of fields in a multi-structure, Oxford Math. Monogr., Oxford University Press, New York, 1999 | MR
[16] N. P. Lazarev, “Problem of equilibrium of the Timoshenko plate containing a crack on the boundary of an elastic inclusion with an infinite shear rigidity”, J. Appl. Mech. Tech. Physics, 54 (2013), 322–330 | DOI | MR | Zbl
[17] N. P. Lazarev, “Optimal control of the thickness of a rigid inclusion in equilibrium problems for inhomogeneous two-dimensional bodies with a crack”, Z. Angew. Math. Mech., 96 (2016), 509–518 | DOI | MR
[18] N. P. Lazarev, E.M. Rudoy, “Shape sensitivity analysis of Timoshenko plate with a crack under the nonpenetration condition”, Z. Angew. Math. Mech., 94 (2014), 730–739 | DOI | MR | Zbl
[19] N.P. Lazarev, “Shape sensitivity analysis of the energy integrals for the Timoshenko-type plate containing a crack on the boundary of a rigid inclusion”, Z. Angew. Math. Phys., 66 (2015), 2025–2040 | DOI | MR | Zbl
[20] N.F. Morozov, Mathematical problems of crack theory, Nauka, M., 1984 | MR
[21] G. Panasenko, Multi-scale modelling for structures and composites, Springer, New York, 2005 | MR
[22] E. M. Rudoy, “Asymptotic behavior of the energy functional for a three-dimensional body with a rigid inclusion and a crack”, J. Appl. Mech. Tech. Physics, 52 (2011), 252–263 | DOI | MR
[23] E. M. Rudoy, “Domain decomposition method for crack problems with nonpenetration condition”, ESAIM: M2AN, 50 (2016), 995–1009 | DOI | MR | Zbl
[24] E.M. Rudoy, “Numerical solution of an equilibrium problem for an elastic body with a thin delaminated rigid inclusion”, Journal of Applied and Industrial Mathematics, 10 (2016), 264–276 | DOI | MR
[25] G. Saccomandi, M.F. Beatty, “Universal relations for fiber-reinforced elastic materials”, Mathematics and Mechanics of Solids, 7 (2002), 95–110 | DOI | MR | Zbl
[26] V. V. Saurin, “Shape design sensitivity analysis for fracture conditions”, Computers and Structures, 76 (2000), 399–405 | DOI
[27] V. V. Shcherbakov, “On an optimal control problem for the shape of thin inclusions in elastic bodies”, J. Appl. Ind. Math., 7 (2013), 435–443 | DOI | MR | Zbl
[28] V. V. Shcherbakov, “Optimal control of rigidity parameter of thin inclusions in elastic bodies with curvilinear cracks”, J. Math. Sciences, 203 (2014), 591–604 | DOI | MR
[29] V. V. Scherbakov, “Existence of an optimal shape of the thin rigid inclusions in the Kirchhoff–Love plate”, J. Appl. Ind. Math., 8 (2014), 97–105 | DOI | MR
[30] J. Yao, “Instability of a composite reinforced with coated inclusions due to interface debonding”, Arch. Appl. Mech., 85 (2015), 415–432 | DOI