On crack propagations in elastic bodies with thin inclusions
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 586-599
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper concerns an analysis of a crack propagation phenomena for an elastic body with thin inclusions and cracks. In the frame of free boundary approach, we investigate a dependence of the solutions on a rigidity parameter of the inclusion. A passage to the limit is justified as the parameter goes to infinity. Derivatives of the energy functionals are found with respect to the crack length for the models considered with different rigidity parameters. The Griffith criterion is used to describe a crack propagation. In so doing, an optimal control problem is investigated with a rigidity parameter being a control function. A cost functional coincides with a derivative of the energy functional with respect to the crack length. A solution existence is proved.
Keywords:
thin elastic inclusion, Timoshenko beam, crack, delamination, nonpenetration boundary condition, optimal control.
Mots-clés : semirigid inclusion
Mots-clés : semirigid inclusion
@article{SEMR_2017_14_a91,
author = {A. M. Khludnev and T. S. Popova},
title = {On crack propagations in elastic bodies with thin inclusions},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {586--599},
publisher = {mathdoc},
volume = {14},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a91/}
}
TY - JOUR AU - A. M. Khludnev AU - T. S. Popova TI - On crack propagations in elastic bodies with thin inclusions JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2017 SP - 586 EP - 599 VL - 14 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a91/ LA - en ID - SEMR_2017_14_a91 ER -
A. M. Khludnev; T. S. Popova. On crack propagations in elastic bodies with thin inclusions. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 586-599. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a91/