On crack propagations in elastic bodies with thin inclusions
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 586-599.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper concerns an analysis of a crack propagation phenomena for an elastic body with thin inclusions and cracks. In the frame of free boundary approach, we investigate a dependence of the solutions on a rigidity parameter of the inclusion. A passage to the limit is justified as the parameter goes to infinity. Derivatives of the energy functionals are found with respect to the crack length for the models considered with different rigidity parameters. The Griffith criterion is used to describe a crack propagation. In so doing, an optimal control problem is investigated with a rigidity parameter being a control function. A cost functional coincides with a derivative of the energy functional with respect to the crack length. A solution existence is proved.
Keywords: thin elastic inclusion, Timoshenko beam, crack, delamination, nonpenetration boundary condition, optimal control.
Mots-clés : semirigid inclusion
@article{SEMR_2017_14_a91,
     author = {A. M. Khludnev and T. S. Popova},
     title = {On crack propagations in elastic bodies with thin inclusions},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {586--599},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a91/}
}
TY  - JOUR
AU  - A. M. Khludnev
AU  - T. S. Popova
TI  - On crack propagations in elastic bodies with thin inclusions
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 586
EP  - 599
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a91/
LA  - en
ID  - SEMR_2017_14_a91
ER  - 
%0 Journal Article
%A A. M. Khludnev
%A T. S. Popova
%T On crack propagations in elastic bodies with thin inclusions
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 586-599
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a91/
%G en
%F SEMR_2017_14_a91
A. M. Khludnev; T. S. Popova. On crack propagations in elastic bodies with thin inclusions. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 586-599. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a91/

[1] R. V. Goldstein, E. I. Shifrin, P. S. Shushpannikov, “Application of invariant integrals to the problems of defect identification”, Int. J. Fracture, 147 (2007), 45–54 | DOI | Zbl

[2] P. Hild, A. Munch, Y. Ousset, “On the control of crack growth in elastic media”, Comptes Rendus Mecanique, 336 (2008), 422–427 | DOI | MR | Zbl

[3] H. Itou, A.M. Khludnev, “On delaminated thin Timoshenko inclusions inside elastic bodies”, Math. Meth. Appl. Sciences, 39 (2016), 4980–4993 | DOI | MR | Zbl

[4] A. M. Khludnev, V.A. Kovtunenko, Analysis of cracks in solids, WIT Press, Southampton–Boston, 2000

[5] A.M. Khludnev, Elasticity problems in non-smooth domains, Fizmatlit, M., 2010

[6] A. M. Khludnev, G. Leugering, M. Specovius-Neugebauer, “Optimal control of inclusion and crack shapes in elastic bodies”, J. Opt. Theory Appl., 155 (2012), 54–78 | DOI | MR | Zbl

[7] A. M. Khludnev, G. Leugering, “Optimal control of cracks in elastic bodies with thin rigid inclusions”, Z. Angew. Math. Mech., 91 (2011), 125–137 | DOI | MR | Zbl

[8] A. M. Khludnev, “Optimal control of crack growth in elastic body with inclusions”, European Journal of Mechanics – A/Solids, 29 (2010), 392–399 | DOI | MR

[9] A. M. Khludnev, “Shape control of thin rigid inclusions and cracks in elastic bodies”, Arch. Appl. Mech., 83 (2013), 1493–1509 | DOI | Zbl

[10] A. M. Khludnev, G. Leugering, “Delaminated thin elastic inclusion inside elastic bodies”, Mathematics and Mechanics of Complex Systems, 2 (2014), 1–21 | DOI | MR | Zbl

[11] A. M. Khludnev, G. Leugering, “On Timoshenko thin elastic inclusions inside elastic bodies”, Mathematics and Mechanics of Solids, 20 (2015), 495–511 | DOI | MR | Zbl

[12] V. A. Kovtunenko, “Sensitivity of interfacial cracks to non-linear crack front perturbations”, Z. Angev. Math. Mech., 82 (2002), 387–398 | 3.0.CO;2-I class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[13] V. A. Kovtunenko, “Shape sensitivity of curvilinear cracks on interface to non-linear perturbations”, Z. Angew. Math. Phys., 54 (2003), 410–423 | DOI | MR | Zbl

[14] V. A. Kovtunenko, K. Kunisch, “Problem of crack perturbation based on level sets and velocities”, Z. Angew. Math. Mech., 87 (2007), 809–830 | DOI | MR | Zbl

[15] V.A. Kozlov, V.G. Maz'ya, A.B. Movchan, Asymptotic analysis of fields in a multi-structure, Oxford Math. Monogr., Oxford University Press, New York, 1999 | MR

[16] N. P. Lazarev, “Problem of equilibrium of the Timoshenko plate containing a crack on the boundary of an elastic inclusion with an infinite shear rigidity”, J. Appl. Mech. Tech. Physics, 54 (2013), 322–330 | DOI | MR | Zbl

[17] N. P. Lazarev, “Optimal control of the thickness of a rigid inclusion in equilibrium problems for inhomogeneous two-dimensional bodies with a crack”, Z. Angew. Math. Mech., 96 (2016), 509–518 | DOI | MR

[18] N. P. Lazarev, E.M. Rudoy, “Shape sensitivity analysis of Timoshenko plate with a crack under the nonpenetration condition”, Z. Angew. Math. Mech., 94 (2014), 730–739 | DOI | MR | Zbl

[19] N.P. Lazarev, “Shape sensitivity analysis of the energy integrals for the Timoshenko-type plate containing a crack on the boundary of a rigid inclusion”, Z. Angew. Math. Phys., 66 (2015), 2025–2040 | DOI | MR | Zbl

[20] N.F. Morozov, Mathematical problems of crack theory, Nauka, M., 1984 | MR

[21] G. Panasenko, Multi-scale modelling for structures and composites, Springer, New York, 2005 | MR

[22] E. M. Rudoy, “Asymptotic behavior of the energy functional for a three-dimensional body with a rigid inclusion and a crack”, J. Appl. Mech. Tech. Physics, 52 (2011), 252–263 | DOI | MR

[23] E. M. Rudoy, “Domain decomposition method for crack problems with nonpenetration condition”, ESAIM: M2AN, 50 (2016), 995–1009 | DOI | MR | Zbl

[24] E.M. Rudoy, “Numerical solution of an equilibrium problem for an elastic body with a thin delaminated rigid inclusion”, Journal of Applied and Industrial Mathematics, 10 (2016), 264–276 | DOI | MR

[25] G. Saccomandi, M.F. Beatty, “Universal relations for fiber-reinforced elastic materials”, Mathematics and Mechanics of Solids, 7 (2002), 95–110 | DOI | MR | Zbl

[26] V. V. Saurin, “Shape design sensitivity analysis for fracture conditions”, Computers and Structures, 76 (2000), 399–405 | DOI

[27] V. V. Shcherbakov, “On an optimal control problem for the shape of thin inclusions in elastic bodies”, J. Appl. Ind. Math., 7 (2013), 435–443 | DOI | MR | Zbl

[28] V. V. Shcherbakov, “Optimal control of rigidity parameter of thin inclusions in elastic bodies with curvilinear cracks”, J. Math. Sciences, 203 (2014), 591–604 | DOI | MR

[29] V. V. Scherbakov, “Existence of an optimal shape of the thin rigid inclusions in the Kirchhoff–Love plate”, J. Appl. Ind. Math., 8 (2014), 97–105 | DOI | MR

[30] J. Yao, “Instability of a composite reinforced with coated inclusions due to interface debonding”, Arch. Appl. Mech., 85 (2015), 415–432 | DOI