Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2017_14_a90, author = {D. A. Prokudin}, title = {Unique solvability of initial-boundary value problem for a model system of equations for the polytropic motion of a mixture of viscous compressible fluids}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {568--585}, publisher = {mathdoc}, volume = {14}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a90/} }
TY - JOUR AU - D. A. Prokudin TI - Unique solvability of initial-boundary value problem for a model system of equations for the polytropic motion of a mixture of viscous compressible fluids JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2017 SP - 568 EP - 585 VL - 14 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a90/ LA - ru ID - SEMR_2017_14_a90 ER -
%0 Journal Article %A D. A. Prokudin %T Unique solvability of initial-boundary value problem for a model system of equations for the polytropic motion of a mixture of viscous compressible fluids %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2017 %P 568-585 %V 14 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a90/ %G ru %F SEMR_2017_14_a90
D. A. Prokudin. Unique solvability of initial-boundary value problem for a model system of equations for the polytropic motion of a mixture of viscous compressible fluids. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 568-585. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a90/
[1] N. A. Kucher, D. A. Prokudin, “Stationary solutions to the equations of a mixture of compressible viscous fluids”, Sib. Zh. Ind. Mat., 12:3 (2009), 52–65 (in Russian) | MR | Zbl
[2] N. A. Kucher, A. E. Mamontov, D. A. Prokudin, “Stationary solutions to the equations of dynamics of mixtures of heat-conductive compressible viscous fluids”, Siberian Math. J., 53:6 (2012), 1075–1088 | DOI | MR | Zbl
[3] A. E. Mamontov, D. A. Prokudin, “Solubility of a stationary boundary-value problem for the equations of motion of a one-temperature mixture of viscous compressible heat-conducting fluids”, Izvestiya Ros. Akad. Nauk. Ser.: Mathematics, 78:3 (2014), 554–579 | MR | Zbl
[4] A. E. Mamontov, D. A. Prokudin, “Solvability of the regularized steady problem of the spatial motions of multocomponent viscous compressible fluids”, Siberian Math. J., 57:6 (2016), 1044–1054 | DOI | MR | Zbl
[5] A. E. Mamontov, D. A. Prokudin, “Solubility of initial boundary value problem for the equations of polytropic motion of multicomponent viscous compressible fluids”, Siberian Electr. Math. Reports, 13 (2016), 541–583 (in Russian) | MR | Zbl
[6] A. E. Mamontov, D. A. Prokudin, “Solubility of steady boundary value problem for the equations of polytropic motion of multicomponent viscous compressible fluids”, Siberian Electr. Math. Reports, 13 (2016), 664–693 (in Russian) | MR
[7] D. A. Prokudin, M. V. Krayushkina, “Solvability of a stationary boundary value problem for a model system of the equations of barotropic motion of a mixture of compressible viscous fluids”, Journal of Applied and Industrial Mathematics, 10:3 (2016), 417–428 | DOI | MR | Zbl
[8] A. E. Mamontov, D. A. Prokudin, “Existence of weak solutions to the three-dimensional problem of steady barotropic motions of mixtures of viscous compressible fluids”, Siberian Math. J., 58:1 (2017), 113–127 | DOI | MR | Zbl
[9] A. E. Mamontov, D. A. Prokudin, “Viscous compressible multi-fluids: modeling and multi-D existence”, Methods and Applications of Analysis, 20:2 (2013), 179–195 | DOI | MR
[10] A. E. Mamontov, D. A. Prokudin, “Viscous compressible homogeneous multi-fluids with multiple velocities: barotropic existence theory”, Siberian Electr. Math. Reports, 14 (2017), 388–397 | MR
[11] A. V. Kazhikov, A. N. Petrov, “Well-posedness of the initial-boundary value problem for a model system of equations of a multicomponent mixture”, Din. Splosh. Sredy, 35 (1978), 61–73 (in Russian) | MR
[12] A. N. Petrov, “Well-posedness of initial-boundary value problems for one-dimensional equations of mutually penetrating flows of ideal gases”, Din. Splosh. Sredy, 56 (1982), 105–121 (in Russian) | MR
[13] S. N. Antontsev, A. V. Kazhikhov, V. N. Monakhov, Boundary value problems in mechanics of nonhomogeneous fluids, Studies in Mathematics and its Applications, 22, North-Holland Publishing Co., Amsterdam, 1990 | MR | Zbl
[14] A. Novotný, I. Straškraba, Introduction to the mathematical theory of compressible flow, Oxford Lecture Series in Mathematics and Its Applications, 27, Oxford University Press, Oxford, 2004 | MR | Zbl