Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2017_14_a89, author = {E. V. Semenko and T. I. Semenko}, title = {Linear problem of shock wave disturbance analysis. {Part~3:~Refraction} and reflection in the neutral stability case}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {493--510}, publisher = {mathdoc}, volume = {14}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a89/} }
TY - JOUR AU - E. V. Semenko AU - T. I. Semenko TI - Linear problem of shock wave disturbance analysis. Part~3:~Refraction and reflection in the neutral stability case JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2017 SP - 493 EP - 510 VL - 14 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a89/ LA - en ID - SEMR_2017_14_a89 ER -
%0 Journal Article %A E. V. Semenko %A T. I. Semenko %T Linear problem of shock wave disturbance analysis. Part~3:~Refraction and reflection in the neutral stability case %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2017 %P 493-510 %V 14 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a89/ %G en %F SEMR_2017_14_a89
E. V. Semenko; T. I. Semenko. Linear problem of shock wave disturbance analysis. Part~3:~Refraction and reflection in the neutral stability case. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 493-510. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a89/
[1] L. D. Landau, E. M. Lifshitz, Course of Theoretical Physics, v. 6, Fluid Mechanics, 2nd edition, Elsevier, 1987 | MR
[2] S. P. D'yakov, “On the stability of shock waves”, Sov. Phys. JETP, 27 (1954), 288–295 | MR | Zbl
[3] S. P. D'yakov, “The interaction of shock waves with small perturbations”, Sov. Phys. JETP, 33 (1957), 948–974 | MR
[4] V. M. Kontorovitch, “Reflection and refraction of sound by shock waves”, Sov. Phys. JETP, 33 (1957), 1527–1528
[5] J. F. McKenzie, K. O. Westphal, “Interaction of linear waves with oblique shock waves”, Phys. Fluids, 11 (1968), 2350–2362 | DOI | Zbl
[6] W. R. Johnson, O. Laporte, “Interaction of Cylindrical Sound Waves with a Stationary Shock Wave”, Phys. Fluids, 1 (1958), 82–94 | DOI | MR | Zbl
[7] G. R. Fowles, G. W. Swan, “Stability of plane shock waves”, Phys. Rev. Lett., 30 (1973), 1023–1025 | DOI
[8] W. K. Van Moorhem, A. R. George, “On the stability of plane shocks”, Journal of Fluid Mechanics, 68 (1975), 97–108 | DOI | Zbl
[9] G. W. Swan, G. R. Fowles, “Shock wave stability”, Phys. Fluids, 18 (1975), 28–35 | DOI | Zbl
[10] G. R. Fowles, “Conditional stability of shock waves — a criterion for detonation”, Phys. Fluids, 19 (1976), 227–238 | DOI | Zbl
[11] G. R. Fowles, “Stimulated and spontaneous emission of acoustic waves from shock fronts”, Phys. Fluids, 24 (1981), 220–227 | DOI | Zbl
[12] M. Mond, I. M. Rutkevich, “Spontaneous acoustic emission from strong ionizing shocks”, Journal of Fluid Mechanics, 275 (1994), 121–146 | DOI | MR | Zbl
[13] J.-C. Robinet, G. Casalis, “Critical interaction of a shock wave with an acoustic wave”, Phys. Fluids, 13 (2001), 1047–1059 | DOI | MR
[14] I. Men'shov, Y. Nakamura, Abnormal amplification of sound waves refracted by an oblique shock wave, JAXA Special Publication, SP-03-002, 2004, 23–28
[15] S. V. Iordanski, “On stability of a plane shock wave”, Journal of Applied Mathematics and Mechanics, 21 (1957), 465–472 | MR
[16] J. J. Erpenbeck, “Stability of Steady-State Equilibrium Detonations”, Phys. Fluids, 5 (1962), 604–614 | DOI | MR
[17] J. J. Erpenbeck, “Stability of Step Shocks”, Phys. Fluids, 5 (1962), 1181–1187 | DOI | MR | Zbl
[18] R. M. Zaidel, “Shock wave from a slightly curved piston”, Journal of Applied Mathematics and Mechanics, 24 (1960), 316–320 | DOI | MR
[19] R. M. Zaidel, “The perturbations propagation in plane shock waves”, Journal of Applied Mechanics and Technical Physics, 4 (1967), 30–39
[20] J. W. Bates, “Initial-value-problem solution for isolated rippled shock fronts in arbitrary fluid media”, Phys. Rev. E, 69 (2004), 056313-1–056313-16 | DOI | MR
[21] J. W. Bates, “Instability of isolated planar shock waves”, Phys. Fluids, 19 (2007), 1–15
[22] A. Tumin, “Initial-value problem for small disturbances in an idealized one-dimensional detonation”, Phys. Fluids, 19 (2007), 106105-1–106105-12 | DOI
[23] G. R. Fowles, A. F. P. Houwing, “Instabilities of shock and detonation waves”, Phys. Fluids, 27 (1984), 1982–1990 | DOI | MR | Zbl
[24] N. M. Kuznetsov, “Contribution to shock-wave stability theory”, Zh. Eksp. Teor. Fiz., 88 (1985), 470–486
[25] N. M. Kuznetsov, “Stability of shock waves”, Usp. Fiz. Nauk, 159 (1989), 493–527 | DOI
[26] J. W. Bates, D. C. Montgomery, “The D'yakov–Kontorovich Instability of Shock Waves in Real Gases”, Phys. Rev. Lett., 84 (2000), 1180–1183 | DOI
[27] A. V. Konyukhov, A. P. Likhachev, V. E. Fortov, S. I. Anisimov, A. M. Oparin, “Stability and ambiguous representation of shock wave discontinuity in thermodynamically nonideal media”, Pis'ma Zh. Eksp. Teor. Fiz., 90 (2009), 28–34
[28] G. F. Carrier, M. Krook, C. E. Pearson, Functions of a complex variable, Hod Books, Ithaka, N. Y., 1983 | MR | Zbl
[29] E. Zauderer, Partial Differential Equations, 3rd edition, Wiley, 2006 | MR | Zbl