Variational principles and stability of the inviscid open flows
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 218-251.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, we study the stability of the steady solutions of boundary value problems for ideal incompressible fluid flows through a given domain. For doing this we generalize Arnold's form of the direct Liapunov method (1966) that was being applied earlier to the cases of fully impermeable boundaries or periodic flows only. We ascertain a number of criteria for Liapunov stability or asymptotic stability as well as new classes of open flows possessing the mentioned properties. In addition, we prove that the occurrence of the recirculation areas is inevitable in rather wide classes of open channel flows.
Keywords: vortex flow, stability.
Mots-clés : incompressible Euler equations
@article{SEMR_2017_14_a86,
     author = {A. B. Morgulis},
     title = {Variational principles and stability of the inviscid open flows},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {218--251},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a86/}
}
TY  - JOUR
AU  - A. B. Morgulis
TI  - Variational principles and stability of the inviscid open flows
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 218
EP  - 251
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a86/
LA  - ru
ID  - SEMR_2017_14_a86
ER  - 
%0 Journal Article
%A A. B. Morgulis
%T Variational principles and stability of the inviscid open flows
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 218-251
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a86/
%G ru
%F SEMR_2017_14_a86
A. B. Morgulis. Variational principles and stability of the inviscid open flows. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 218-251. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a86/

[1] G. V. Alekseev, “On vanishing viscosity in the two dimensional steady problems of dynamics of an incompressible fluid”, Dyn. Continuous Media, 10 (1972), 5–28 (in Russian) | MR

[2] G. V. Alekseev, “Uniqueness and smoothness for the vortex flows of ideal incompressible fluid”, Dyn. Continuous Media, 15 (1973), 7–18 (in Russian) | MR

[3] G. V. Alekseev, “Solvability for an inhomogeneous boundary-value problem for the two dimensional equations of the ideal fluid dynamics”, Dyn. Continuous Media, 24 (1976), 15–35 (in Russian) | MR

[4] G. V. Alekseev, “Stabilization of solutions of two-dimensional equations of dynamics of an ideal liquid”, J. Appl. Mech. Tech. Phys., 18 (1977), 210–216 | DOI

[5] G. V. Alekseev, Y. A. Mokin, “Class of exact solutions to the ideal fluid dynamics and MHD equations”, Dyn. Continuous Media, 12 (1972), 5–13 (in Russian)

[6] Sov. Math. Dokl., 13 (1972), 791–794

[7] S. N. Antontsev, N. V. Chemetov, “Euler equations with non-homogeneous Navier slip boundary conditions”, Physica D, 237 (2008), 92–105 | DOI | MR | Zbl

[8] S. N. Antontsev, N. V. Chemetov, “Flux of superconducting vortices through a domain”, SIAM J. Math. Anal., 39:1 (2007), 263–280 | DOI | MR | Zbl

[9] S. Antontsev, A. Kazhikhov, V. Monakhov, Boundary Value Problems in Mechanics of Inhomogeneous Fluids, Studies in Mathematics and Applications, 22, North-Holland, 1990 | MR

[10] Am. Math. Soc. Trans. II, 79 ( (969), 267–269 | MR | Zbl | Zbl

[11] V. I. Arnold, “Sur la geometrie differentielle des groupes de Lie de dimension infinie et ses applications a' l'hydrodynamique des fluides parfaits”, Ann. Inst. Fourier (Grenoble), 16:1 (1966), 319–361 | DOI | MR | Zbl

[12] V. I. Arnold, B. A. Khesin, Topological Methods in Hydrodynamics, Springer-Verlag, New York, 1998 | MR | Zbl

[13] A. L. Afendikov, K. I. Babenko, “Mathematical modelling of turbulence in viscous incompressible flows”, Matem. Mod., 1:8 (1989), 45–74 | MR | Zbl

[14] A. L. Afendikov, T. J. Bridges, “Instability of the Hocking–Stewartson pulse and its implications for three-dimensional Poiseuille flow”, Proc. of the Royal Soc. A, 457 (2006), 257–272 | DOI | MR

[15] N. V. Chemetov, V. N. Starovoitov, “On a motion of a perfect fluid in a domain with sources and sinks”, J. Math. Fluid Mech., 4 (2002), 1–17 | DOI | MR

[16] F. Gallaire, J.-M. Chomaz, “The role of boundary conditions in a simple model of incipient vortex breakdown”, Physics of Fluids, 16 (2004), 274–286 | DOI | MR

[17] B. Gallet, C. R. Doering, E. A. Spiegel, “Destabilizing Taylor-Couette flow with suction”, Physics of Fluids, 22 (2010), 034105 | DOI | Zbl

[18] D. Gilbarg, N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin–Heidelberg, 2001 | MR | Zbl

[19] M. Goldshtik, F. Hussain, “Inviscid separation in steady planar flows”, Fluid Dyn. Res., 23 (1998), 235–266 | DOI | MR | Zbl

[20] V. N. Govorukhin, A. B. Morgulis, V. A. Vladimirov, “Planar inviscid flows in a channel of finite length: washout, trapping and self-oscillations of vorticity”, J. Fluid Mech., 659 (2010), 420–472 | DOI | MR | Zbl

[21] V. N. Govorukhin, A. B. Morgulis, V. A. Vladimirov, “Dynamics of inviscid incompressible flows subject to the Yudovich boundary conditions”, Izvestiya VUZov Severo-Kavkazskii region, Series of Natural Sciences, Special issue “Challenging problems in mathematical hydrodynamics”, 51–72 (Russian)

[22] K. I. Ilin, A. B. Morgulis, “Instability of an inviscid flow between porous cylinders with radial inflow”, J. Fluid Mech., 730 (2013), 364–378 | DOI | MR | Zbl

[23] K. Ilin, A. Morgulis, “Instability of a two-dimensional viscous flow in an annulus with permeable walls to two-dimensional perturbations”, Physics of Fluids, 27 (2015), 044107 | DOI | Zbl

[24] K. Ilin, A. Morgulis, “Inviscid instability of an incompressible flow between rotating porous cylinders to three-dimensional perturbations”, European Journal of Mechanics-B/Fluids, 61 (2017), 46–60 | DOI | MR

[25] D. D. Joseph, Stability of Fluid Motions, v. I, II, Springer-Verlag, Berlin–Heidelberg–New York, 1976 | MR | MR

[26] A. Kazhikhov, “Note on the formulation of the problem of flow through a bounded region using equations of perfect fluid”, Appl. Math. Mech., 44 (1981), 672–674 | DOI | MR

[27] Fluid dynamics, 33 (1998), 532 | DOI | MR | Zbl

[28] V. Kolesov, L. Shapakidze, “On oscillatory modes in viscous incompressible liquid flows between two counter-rotating permeable cylinders”, Trends in Applications of Mathematics to Mechanics, eds. G. Iooss, O. Gues, A. Nouri, Chapman and Hall/CRC, 1999, 221–227 | MR

[29] M. V. Korobkov, K. Pileckas, V. V. Pukhnachov, R. Russo, “The flux problem for the Navier–Stokes equations”, Russian Math. Surveys, 69:6 (2014), 1065–1122 | DOI | MR | Zbl

[30] N. Kochin, “On the existence theorem in hydrodynamics”, Appl. Math. Mech., 20:2 (1956), 153–172 (in Russian) | Zbl

[31] N. E. Kochin, I. A. Kibel, N. V. Roze, Theoretical Hydromechanics, Interscience Publishers, 1965 | MR

[32] B. Leclaire, D. Sipp, “A sensitivity study of vortex breakdown onset to upstream boundary conditions”, J. Fluid Mech., 645 (2010), 81–119 | DOI | Zbl

[33] A. E. Mamontov, “On the uniqueness of solutions to boundary value problems for non-stationary Euler equations”, New Directions in Mathematical Fluid Mechanics, The Alexander V. Kazhikhov Memorial Volume, Birkhauser Verlag, Basel, 2009, 281–299 | DOI | MR

[34] A. E. Mamontov, M. I. Uvarovskaya, “On the Global Solvability of the Two-Dimensional Through-Flow Problem for the Euler Equations with Unbounded Vorticity at the Entrance”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 11:4 (2011), 69–77 | Zbl

[35] A. Morgulis, V. Yudovich, “Arnold's method for asymptotic stability of steady inviscid incompressible flow through a fixed domain with permeable boundary”, Chaos, 12 (2002), 356–371 | DOI | MR | Zbl

[36] A. B. Morgulis, “Solvability of a three-dimensional stationary flowing problem”, Siberian Mathematical Journal, 40:1 (1999), 121–135 | DOI | MR | Zbl

[37] A. B. Morgulis, V. I. Yudovich, “The asymptotic stability of a steady flow of an ideal incompressible fluid through a permeable domain”, Doklady Physics, 46:10 (2001), 736–739 | DOI | MR

[38] A. B. Morgulis, V. I. Yudovich, “Asymptotic stability of a stationary flowing regime of an ideal incompressible fluid”, Siberian Mathematical Journal, 43:4 (2002), 674–688 | DOI | MR | Zbl

[39] A. B. Morgulis, “Non-linear Asymptotic Stability for the Through-Passing Flows of Inviscid Incompressible Fluid”, Asymptotic Analysis, 66 (2010), 229–247 | MR | Zbl

[40] M. N. Romanov, V. V. Kolesov, “Chaos generation in the Couette–Taylor problem for permeable cylinders”, Fluid Dyn., 48 (2013), 46–56 | DOI | MR | Zbl

[41] M. N. Romanov, V. V. Kolesov, “Occurrence of quasiperiodic flows between two rotating permeable cylinders”, J. Appl. Mech. Tech. Physics, 55 (2014), 421–429 | DOI | MR

[42] Z. Rusak, S. Wang, L. Xu, S. Taylor, “On the global nonlinear stability of a near-critical swirling flow in a long finite-length pipe and the path to vortex breakdown”, J. Fluid Mech., 712 (2012), 295–326 | DOI | MR | Zbl

[43] Z. Rusak, S. Wang, “Wall-separation and vortex-breakdown zones in a solid-body rotation flow in a rotating finite-length straight circular pipe”, J. of Fluid Mech., 759 (2014), 321–359 | DOI | Zbl

[44] E. Serre, M. A. Sprague, R. M. Lueptow, “Stability of Taylor–Couette flow in a finite-length cavity with radial throughflow”, Phys. Fluids, 20 (2008), 034106 | DOI | Zbl

[45] O. V. Troshkin, “Topological analysis of the structure of hydrodynamic flows”, Uspekhi Mat. Nauk, 43:4(262) (1988), 129–158 | MR | Zbl

[46] M. I. Uvarovskaya, “Existence and uniqueness for two dimensional problem of ideal fluid flow through a given domain”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 3 (2003), 3–11 (Russian)

[47] Fluid Dyn., 2 (1971), 1–6 | DOI | MR | Zbl

[48] Amer. Math. Soc. Translations, 57 (1966), 277–304 | MR

[49] J. Appl. Math. Mech., 35 (1971), 587–603 | DOI | MR | Zbl

[50] J. Appl. Math. Mech., 36 (1972) | Zbl

[51] Translation of Mathematical Monographs, 74, American Mathematical Society, Providence, RI, 1989 | MR | Zbl

[52] V. I. Yudovich, “Eleven great problems of mathematical hydrodynamics”, Mosc. Math. J., 3 (2003), 711–737 | MR | Zbl