Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2017_14_a86, author = {A. B. Morgulis}, title = {Variational principles and stability of the inviscid open flows}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {218--251}, publisher = {mathdoc}, volume = {14}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a86/} }
A. B. Morgulis. Variational principles and stability of the inviscid open flows. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 218-251. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a86/
[1] G. V. Alekseev, “On vanishing viscosity in the two dimensional steady problems of dynamics of an incompressible fluid”, Dyn. Continuous Media, 10 (1972), 5–28 (in Russian) | MR
[2] G. V. Alekseev, “Uniqueness and smoothness for the vortex flows of ideal incompressible fluid”, Dyn. Continuous Media, 15 (1973), 7–18 (in Russian) | MR
[3] G. V. Alekseev, “Solvability for an inhomogeneous boundary-value problem for the two dimensional equations of the ideal fluid dynamics”, Dyn. Continuous Media, 24 (1976), 15–35 (in Russian) | MR
[4] G. V. Alekseev, “Stabilization of solutions of two-dimensional equations of dynamics of an ideal liquid”, J. Appl. Mech. Tech. Phys., 18 (1977), 210–216 | DOI
[5] G. V. Alekseev, Y. A. Mokin, “Class of exact solutions to the ideal fluid dynamics and MHD equations”, Dyn. Continuous Media, 12 (1972), 5–13 (in Russian)
[6] Sov. Math. Dokl., 13 (1972), 791–794
[7] S. N. Antontsev, N. V. Chemetov, “Euler equations with non-homogeneous Navier slip boundary conditions”, Physica D, 237 (2008), 92–105 | DOI | MR | Zbl
[8] S. N. Antontsev, N. V. Chemetov, “Flux of superconducting vortices through a domain”, SIAM J. Math. Anal., 39:1 (2007), 263–280 | DOI | MR | Zbl
[9] S. Antontsev, A. Kazhikhov, V. Monakhov, Boundary Value Problems in Mechanics of Inhomogeneous Fluids, Studies in Mathematics and Applications, 22, North-Holland, 1990 | MR
[10] Am. Math. Soc. Trans. II, 79 ( (969), 267–269 | MR | Zbl | Zbl
[11] V. I. Arnold, “Sur la geometrie differentielle des groupes de Lie de dimension infinie et ses applications a' l'hydrodynamique des fluides parfaits”, Ann. Inst. Fourier (Grenoble), 16:1 (1966), 319–361 | DOI | MR | Zbl
[12] V. I. Arnold, B. A. Khesin, Topological Methods in Hydrodynamics, Springer-Verlag, New York, 1998 | MR | Zbl
[13] A. L. Afendikov, K. I. Babenko, “Mathematical modelling of turbulence in viscous incompressible flows”, Matem. Mod., 1:8 (1989), 45–74 | MR | Zbl
[14] A. L. Afendikov, T. J. Bridges, “Instability of the Hocking–Stewartson pulse and its implications for three-dimensional Poiseuille flow”, Proc. of the Royal Soc. A, 457 (2006), 257–272 | DOI | MR
[15] N. V. Chemetov, V. N. Starovoitov, “On a motion of a perfect fluid in a domain with sources and sinks”, J. Math. Fluid Mech., 4 (2002), 1–17 | DOI | MR
[16] F. Gallaire, J.-M. Chomaz, “The role of boundary conditions in a simple model of incipient vortex breakdown”, Physics of Fluids, 16 (2004), 274–286 | DOI | MR
[17] B. Gallet, C. R. Doering, E. A. Spiegel, “Destabilizing Taylor-Couette flow with suction”, Physics of Fluids, 22 (2010), 034105 | DOI | Zbl
[18] D. Gilbarg, N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin–Heidelberg, 2001 | MR | Zbl
[19] M. Goldshtik, F. Hussain, “Inviscid separation in steady planar flows”, Fluid Dyn. Res., 23 (1998), 235–266 | DOI | MR | Zbl
[20] V. N. Govorukhin, A. B. Morgulis, V. A. Vladimirov, “Planar inviscid flows in a channel of finite length: washout, trapping and self-oscillations of vorticity”, J. Fluid Mech., 659 (2010), 420–472 | DOI | MR | Zbl
[21] V. N. Govorukhin, A. B. Morgulis, V. A. Vladimirov, “Dynamics of inviscid incompressible flows subject to the Yudovich boundary conditions”, Izvestiya VUZov Severo-Kavkazskii region, Series of Natural Sciences, Special issue “Challenging problems in mathematical hydrodynamics”, 51–72 (Russian)
[22] K. I. Ilin, A. B. Morgulis, “Instability of an inviscid flow between porous cylinders with radial inflow”, J. Fluid Mech., 730 (2013), 364–378 | DOI | MR | Zbl
[23] K. Ilin, A. Morgulis, “Instability of a two-dimensional viscous flow in an annulus with permeable walls to two-dimensional perturbations”, Physics of Fluids, 27 (2015), 044107 | DOI | Zbl
[24] K. Ilin, A. Morgulis, “Inviscid instability of an incompressible flow between rotating porous cylinders to three-dimensional perturbations”, European Journal of Mechanics-B/Fluids, 61 (2017), 46–60 | DOI | MR
[25] D. D. Joseph, Stability of Fluid Motions, v. I, II, Springer-Verlag, Berlin–Heidelberg–New York, 1976 | MR | MR
[26] A. Kazhikhov, “Note on the formulation of the problem of flow through a bounded region using equations of perfect fluid”, Appl. Math. Mech., 44 (1981), 672–674 | DOI | MR
[27] Fluid dynamics, 33 (1998), 532 | DOI | MR | Zbl
[28] V. Kolesov, L. Shapakidze, “On oscillatory modes in viscous incompressible liquid flows between two counter-rotating permeable cylinders”, Trends in Applications of Mathematics to Mechanics, eds. G. Iooss, O. Gues, A. Nouri, Chapman and Hall/CRC, 1999, 221–227 | MR
[29] M. V. Korobkov, K. Pileckas, V. V. Pukhnachov, R. Russo, “The flux problem for the Navier–Stokes equations”, Russian Math. Surveys, 69:6 (2014), 1065–1122 | DOI | MR | Zbl
[30] N. Kochin, “On the existence theorem in hydrodynamics”, Appl. Math. Mech., 20:2 (1956), 153–172 (in Russian) | Zbl
[31] N. E. Kochin, I. A. Kibel, N. V. Roze, Theoretical Hydromechanics, Interscience Publishers, 1965 | MR
[32] B. Leclaire, D. Sipp, “A sensitivity study of vortex breakdown onset to upstream boundary conditions”, J. Fluid Mech., 645 (2010), 81–119 | DOI | Zbl
[33] A. E. Mamontov, “On the uniqueness of solutions to boundary value problems for non-stationary Euler equations”, New Directions in Mathematical Fluid Mechanics, The Alexander V. Kazhikhov Memorial Volume, Birkhauser Verlag, Basel, 2009, 281–299 | DOI | MR
[34] A. E. Mamontov, M. I. Uvarovskaya, “On the Global Solvability of the Two-Dimensional Through-Flow Problem for the Euler Equations with Unbounded Vorticity at the Entrance”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 11:4 (2011), 69–77 | Zbl
[35] A. Morgulis, V. Yudovich, “Arnold's method for asymptotic stability of steady inviscid incompressible flow through a fixed domain with permeable boundary”, Chaos, 12 (2002), 356–371 | DOI | MR | Zbl
[36] A. B. Morgulis, “Solvability of a three-dimensional stationary flowing problem”, Siberian Mathematical Journal, 40:1 (1999), 121–135 | DOI | MR | Zbl
[37] A. B. Morgulis, V. I. Yudovich, “The asymptotic stability of a steady flow of an ideal incompressible fluid through a permeable domain”, Doklady Physics, 46:10 (2001), 736–739 | DOI | MR
[38] A. B. Morgulis, V. I. Yudovich, “Asymptotic stability of a stationary flowing regime of an ideal incompressible fluid”, Siberian Mathematical Journal, 43:4 (2002), 674–688 | DOI | MR | Zbl
[39] A. B. Morgulis, “Non-linear Asymptotic Stability for the Through-Passing Flows of Inviscid Incompressible Fluid”, Asymptotic Analysis, 66 (2010), 229–247 | MR | Zbl
[40] M. N. Romanov, V. V. Kolesov, “Chaos generation in the Couette–Taylor problem for permeable cylinders”, Fluid Dyn., 48 (2013), 46–56 | DOI | MR | Zbl
[41] M. N. Romanov, V. V. Kolesov, “Occurrence of quasiperiodic flows between two rotating permeable cylinders”, J. Appl. Mech. Tech. Physics, 55 (2014), 421–429 | DOI | MR
[42] Z. Rusak, S. Wang, L. Xu, S. Taylor, “On the global nonlinear stability of a near-critical swirling flow in a long finite-length pipe and the path to vortex breakdown”, J. Fluid Mech., 712 (2012), 295–326 | DOI | MR | Zbl
[43] Z. Rusak, S. Wang, “Wall-separation and vortex-breakdown zones in a solid-body rotation flow in a rotating finite-length straight circular pipe”, J. of Fluid Mech., 759 (2014), 321–359 | DOI | Zbl
[44] E. Serre, M. A. Sprague, R. M. Lueptow, “Stability of Taylor–Couette flow in a finite-length cavity with radial throughflow”, Phys. Fluids, 20 (2008), 034106 | DOI | Zbl
[45] O. V. Troshkin, “Topological analysis of the structure of hydrodynamic flows”, Uspekhi Mat. Nauk, 43:4(262) (1988), 129–158 | MR | Zbl
[46] M. I. Uvarovskaya, “Existence and uniqueness for two dimensional problem of ideal fluid flow through a given domain”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 3 (2003), 3–11 (Russian)
[47] Fluid Dyn., 2 (1971), 1–6 | DOI | MR | Zbl
[48] Amer. Math. Soc. Translations, 57 (1966), 277–304 | MR
[49] J. Appl. Math. Mech., 35 (1971), 587–603 | DOI | MR | Zbl
[50] J. Appl. Math. Mech., 36 (1972) | Zbl
[51] Translation of Mathematical Monographs, 74, American Mathematical Society, Providence, RI, 1989 | MR | Zbl
[52] V. I. Yudovich, “Eleven great problems of mathematical hydrodynamics”, Mosc. Math. J., 3 (2003), 711–737 | MR | Zbl