Variational principles and stability of the inviscid open flows
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 218-251

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, we study the stability of the steady solutions of boundary value problems for ideal incompressible fluid flows through a given domain. For doing this we generalize Arnold's form of the direct Liapunov method (1966) that was being applied earlier to the cases of fully impermeable boundaries or periodic flows only. We ascertain a number of criteria for Liapunov stability or asymptotic stability as well as new classes of open flows possessing the mentioned properties. In addition, we prove that the occurrence of the recirculation areas is inevitable in rather wide classes of open channel flows.
Keywords: vortex flow, stability.
Mots-clés : incompressible Euler equations
@article{SEMR_2017_14_a86,
     author = {A. B. Morgulis},
     title = {Variational principles and stability of the inviscid open flows},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {218--251},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a86/}
}
TY  - JOUR
AU  - A. B. Morgulis
TI  - Variational principles and stability of the inviscid open flows
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 218
EP  - 251
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a86/
LA  - ru
ID  - SEMR_2017_14_a86
ER  - 
%0 Journal Article
%A A. B. Morgulis
%T Variational principles and stability of the inviscid open flows
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 218-251
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a86/
%G ru
%F SEMR_2017_14_a86
A. B. Morgulis. Variational principles and stability of the inviscid open flows. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 218-251. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a86/