Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2017_14_a82, author = {D. A. Tursunov}, title = {The asymptotic solution of the bisingular {Robin} problem}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {10--21}, publisher = {mathdoc}, volume = {14}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a82/} }
D. A. Tursunov. The asymptotic solution of the bisingular Robin problem. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 10-21. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a82/
[1] W. Wasow, Asymptotic Expansions for Ordinary Differential Equations, Dover publications, INC, Mineola–New York, 1965 | MR
[2] W. Wasow, Linear turning point theory, Springer-Verlag, New York, 1985 | MR | Zbl
[3] F. M. Olver, “Connection formulas for second-order differential equations with multiple turning points”, SIAM. J. Math. Anal., 1:8 (1977), 127–154 | DOI | MR
[4] F. M. Olver, “Connection formulas for second-order differential equations having an arbitrary number of turning points of arbitrary multiplicities”, SIAM. J. Math. Anal., 4:8 (1977), 673–700 | DOI | MR
[5] A. M. Il'in, Matching of asymptotic expansions of solutions of boundary value problems, Amer. Math. Soc., Providence, RI, 1992 | MR | Zbl
[6] A. M. Il'in, A. R. Danilin, Asymptotic Methods in Analysis, Fizmatlit, M., 2009 (in Russian) | Zbl
[7] V. N. Bobochko, “Uniform Asymptotics of a Solution of an Inhomogeneous System of Two Differential Equations with a Turning Point”, Russian Mathematics, 50:5 (2006), 6–16 | MR | Zbl
[8] V. N. Bobochko, “An Unstable Differential Turning Point in the Theory of Singular Perturbations”, Russian Mathematics, 49:4 (2005), 6–14 | MR | Zbl
[9] K. Alymkulov, T. D. Asylbekov, S. F. Dolbeeva, “Generalization of the Boundary Function Method for Solving Boundary-Value Problems for Bisingularly Perturbed Second-Order Differential Equations”, Math. Notes, 94:4 (2013), 451–454 | DOI | MR | Zbl
[10] K. Alymkulov, D. A. Tursunov, “On a method of construction of asymptotic decompositions of bisingular perturbed problems”, Russian Mathematics, 60:12 (2016), 1–8 | DOI
[11] D. A. Tursunov, “Asymptotic expansion for a solution of an ordinary second-order differential equation with three turning points”, Tr. IMM UrO RAN, 22, no. 1, 2016, 271–281 | MR
[12] D. A. Tursunov, “Asymptotic expansion of the solution of a singularly perturbed ordinary second-order differential equation with two turning points”, Tomsk state university journal of mathematics and mechanics, 21:1 (2013), 34–40
[13] T. G. T. Carleman, Les fonctions quasi-analytiques, specially Chap. V, Paris, 1926
[14] A. Erdelyi, Asymptotic expansions, Dover publications, INC, New York, 1956 | MR | Zbl