About chromatic uniqueness of some complete tripartite graphs
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1492-1504.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $P(G, x)$ be the chromatic polynomial of a graph $G$. A graph $G$ is called chromatically unique if for any graph $H,\, P(G, x) = P(H, x)$ implies that $G$ and $H$ are isomorphic. In this parer we show that full tripartite graph $K(n_1, n_2, n_3)$ is chromatically unique if $n_1 \geq n_2 \geq n_2 \geq n_3, n_1 - n_3 \leq$ and $n_1 + n_2 + n_3 \not \equiv 2 \mod{3}$.
Keywords: graph, chromatic polynomial, chromatic uniqueness, complete tripartite graph.
@article{SEMR_2017_14_a81,
     author = {P. A. Gein},
     title = {About chromatic uniqueness of some complete tripartite graphs},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1492--1504},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a81/}
}
TY  - JOUR
AU  - P. A. Gein
TI  - About chromatic uniqueness of some complete tripartite graphs
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 1492
EP  - 1504
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a81/
LA  - ru
ID  - SEMR_2017_14_a81
ER  - 
%0 Journal Article
%A P. A. Gein
%T About chromatic uniqueness of some complete tripartite graphs
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 1492-1504
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a81/
%G ru
%F SEMR_2017_14_a81
P. A. Gein. About chromatic uniqueness of some complete tripartite graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1492-1504. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a81/

[1] M.O. Asanov, V.A. Baranskii, V.V. Rasin, Discrete Mathematics: Graphs, Matroids, Algorithms, Publ. Lan', 2010 (In Russian)

[2] F.M. Dong, K.M. Koh, K.L. Teo, Chromatic polynomials and chromaticity of graphs, World Scientific, Hackensack, NJ, 2005 | MR | Zbl

[3] H. Zhao, Chromaticity and adjoint polynomials of graphs, Wöhrmann Print Service, Zutphen, The Netherlands, 2005 | MR

[4] K.M. Koh, K.L. Teo, “The search for chromatically unique graphs”, Graphs Combin., 6:3 (1990), 259–285 | DOI | MR | Zbl

[5] V.A. Baranskii, T.A. Koroleva, “Chromatic uniqueness of certain complete tripartite graphs”, Izv. Ural. Gos. Univ. Mat. Mekh. Inform., 74:12 (2010), 5–26 (Russian. English summary) | MR | Zbl

[6] T.A. Koroleva, “Chromatic uniqueness of some complete tripartite graphs. I”, Trudy Inst. Mat. i Mekh. UrO RAN, 13, no. 3, 2007, 65–83 (In Russian)

[7] T.A. Koroleva, “Chromatic uniqueness of some complete tripartite graphs. II”, Izv. Ural. Gos. Univ. Mat. Mekh. Inform., 74 (2010), 39–56 (Russian. English summary) | MR | Zbl

[8] V.A. Baranskii, T.A. Sen'chonok, “Chromatic uniqueness of elements of height $\leq 3$ in lattices of complete multipartite graphs”, Proceedings of the Steklov Institute of Mathematics, 279 (2012), 1–16 [Tr. Inst. Mat. Mekh. (Ekaterinburg), 17, No 4, 2011, 3–18 ] | DOI | MR | Zbl

[9] R. Liu, H. Zhao, Ch. Ye, “A complete solution to a conjecture on chromatic uniqueness of complete tripartite graphs”, Discrete Math., 289:1–3 (2004), 175–179 | DOI | MR | Zbl

[10] P.A. Gein, “About chromatic uniqueness of complete tripartite graph $K(s,s-1,s-k)$, where $k\geq 1$ and $s-k\geq 2$”, Sib. Èlektron. Mat. Izv., 13 (2016), 331–337 (Russian, English abstract) | MR | Zbl

[11] T. Brylawski, “The lattice of integer partitions”, Dicrete Math., 6 (1973), 210–219 | MR

[12] V.A. Baranskii, T.A. Koroleva, T.A. Senchonok, “On the partition lattice of all integers”, Sib. Èlektron. Mat. Izv., 13 (2016), 744–753 (Russian, English abstract) | MR

[13] H. Zhao, X. Li, Sh. Zhang, R. Liu, “On the minimum real roots of the $\sigma$-polynomials and chromatic uniqueness of graphs”, Discrete Mathematics, 281:1–3 (2004), 277–294 | DOI | MR | Zbl

[14] E.J. Farrell, “On chromatic coefficients”, Discrete Math., 29:3 (1980), 257–264 | DOI | MR | Zbl

[15] V.A. Baranskii, S.V. Viharev, “On the chromatic invariants of bipartite graphs”, Izv. Ural. Gos. Univ., Mat. Mekh., 36:7 (2005), 25–34 (Russian. English summary) | MR | Zbl

[16] G.L. Chia., Ch.-K. Ho, “Chromatic equivalence classes of complete tripartite graphs”, Discrete Mathematics, 309:1 (2009), 134–143 | DOI | MR | Zbl