About chromatic uniqueness of some complete tripartite graphs
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1492-1504
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $P(G, x)$ be the chromatic polynomial of a graph $G$. A graph $G$ is called chromatically unique
if for any graph $H,\, P(G, x) = P(H, x)$ implies that $G$ and $H$ are isomorphic. In this parer we show that full tripartite graph
$K(n_1, n_2, n_3)$ is chromatically unique if $n_1 \geq n_2 \geq n_2 \geq n_3, n_1 - n_3 \leq$ and $n_1 + n_2 + n_3 \not \equiv 2 \mod{3}$.
Keywords:
graph, chromatic polynomial, chromatic uniqueness, complete tripartite graph.
@article{SEMR_2017_14_a81,
author = {P. A. Gein},
title = {About chromatic uniqueness of some complete tripartite graphs},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {1492--1504},
publisher = {mathdoc},
volume = {14},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a81/}
}
P. A. Gein. About chromatic uniqueness of some complete tripartite graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1492-1504. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a81/