About chromatic uniqueness of some complete tripartite graphs
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1492-1504

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $P(G, x)$ be the chromatic polynomial of a graph $G$. A graph $G$ is called chromatically unique if for any graph $H,\, P(G, x) = P(H, x)$ implies that $G$ and $H$ are isomorphic. In this parer we show that full tripartite graph $K(n_1, n_2, n_3)$ is chromatically unique if $n_1 \geq n_2 \geq n_2 \geq n_3, n_1 - n_3 \leq$ and $n_1 + n_2 + n_3 \not \equiv 2 \mod{3}$.
Keywords: graph, chromatic polynomial, chromatic uniqueness, complete tripartite graph.
@article{SEMR_2017_14_a81,
     author = {P. A. Gein},
     title = {About chromatic uniqueness of some complete tripartite graphs},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1492--1504},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a81/}
}
TY  - JOUR
AU  - P. A. Gein
TI  - About chromatic uniqueness of some complete tripartite graphs
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 1492
EP  - 1504
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a81/
LA  - ru
ID  - SEMR_2017_14_a81
ER  - 
%0 Journal Article
%A P. A. Gein
%T About chromatic uniqueness of some complete tripartite graphs
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 1492-1504
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a81/
%G ru
%F SEMR_2017_14_a81
P. A. Gein. About chromatic uniqueness of some complete tripartite graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1492-1504. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a81/