Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2017_14_a81, author = {P. A. Gein}, title = {About chromatic uniqueness of some complete tripartite graphs}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1492--1504}, publisher = {mathdoc}, volume = {14}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a81/} }
P. A. Gein. About chromatic uniqueness of some complete tripartite graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1492-1504. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a81/
[1] M.O. Asanov, V.A. Baranskii, V.V. Rasin, Discrete Mathematics: Graphs, Matroids, Algorithms, Publ. Lan', 2010 (In Russian)
[2] F.M. Dong, K.M. Koh, K.L. Teo, Chromatic polynomials and chromaticity of graphs, World Scientific, Hackensack, NJ, 2005 | MR | Zbl
[3] H. Zhao, Chromaticity and adjoint polynomials of graphs, Wöhrmann Print Service, Zutphen, The Netherlands, 2005 | MR
[4] K.M. Koh, K.L. Teo, “The search for chromatically unique graphs”, Graphs Combin., 6:3 (1990), 259–285 | DOI | MR | Zbl
[5] V.A. Baranskii, T.A. Koroleva, “Chromatic uniqueness of certain complete tripartite graphs”, Izv. Ural. Gos. Univ. Mat. Mekh. Inform., 74:12 (2010), 5–26 (Russian. English summary) | MR | Zbl
[6] T.A. Koroleva, “Chromatic uniqueness of some complete tripartite graphs. I”, Trudy Inst. Mat. i Mekh. UrO RAN, 13, no. 3, 2007, 65–83 (In Russian)
[7] T.A. Koroleva, “Chromatic uniqueness of some complete tripartite graphs. II”, Izv. Ural. Gos. Univ. Mat. Mekh. Inform., 74 (2010), 39–56 (Russian. English summary) | MR | Zbl
[8] V.A. Baranskii, T.A. Sen'chonok, “Chromatic uniqueness of elements of height $\leq 3$ in lattices of complete multipartite graphs”, Proceedings of the Steklov Institute of Mathematics, 279 (2012), 1–16 [Tr. Inst. Mat. Mekh. (Ekaterinburg), 17, No 4, 2011, 3–18 ] | DOI | MR | Zbl
[9] R. Liu, H. Zhao, Ch. Ye, “A complete solution to a conjecture on chromatic uniqueness of complete tripartite graphs”, Discrete Math., 289:1–3 (2004), 175–179 | DOI | MR | Zbl
[10] P.A. Gein, “About chromatic uniqueness of complete tripartite graph $K(s,s-1,s-k)$, where $k\geq 1$ and $s-k\geq 2$”, Sib. Èlektron. Mat. Izv., 13 (2016), 331–337 (Russian, English abstract) | MR | Zbl
[11] T. Brylawski, “The lattice of integer partitions”, Dicrete Math., 6 (1973), 210–219 | MR
[12] V.A. Baranskii, T.A. Koroleva, T.A. Senchonok, “On the partition lattice of all integers”, Sib. Èlektron. Mat. Izv., 13 (2016), 744–753 (Russian, English abstract) | MR
[13] H. Zhao, X. Li, Sh. Zhang, R. Liu, “On the minimum real roots of the $\sigma$-polynomials and chromatic uniqueness of graphs”, Discrete Mathematics, 281:1–3 (2004), 277–294 | DOI | MR | Zbl
[14] E.J. Farrell, “On chromatic coefficients”, Discrete Math., 29:3 (1980), 257–264 | DOI | MR | Zbl
[15] V.A. Baranskii, S.V. Viharev, “On the chromatic invariants of bipartite graphs”, Izv. Ural. Gos. Univ., Mat. Mekh., 36:7 (2005), 25–34 (Russian. English summary) | MR | Zbl
[16] G.L. Chia., Ch.-K. Ho, “Chromatic equivalence classes of complete tripartite graphs”, Discrete Mathematics, 309:1 (2009), 134–143 | DOI | MR | Zbl