An enhancement of Nash--Williams' Theorem on edge arboricity of graphs
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1324-1329.

Voir la notice de l'article provenant de la source Math-Net.Ru

The well-known Nash–Williams' Theorem states that for any positive integer $k$ a multigraph $G=(V,E)$ admits an edge decomposition into $k$ forests iff every subset $X\subseteq V$ induces a subgraph $G[X]$ with at most $k(|X|-1)$ edges. In this paper we prove that, under certain conditions, this decomposition can be chosen so that each forest contains no isolated vertices. More precisely, we prove that if either $G$ is a bipartite multigraph with minimum degree $\delta(G)\ge k$, or $k=2$ and $\delta(G)\ge 3$, then $G$ can be decomposed into $k$ forests without isolated vertices.
Keywords: graph, multigraph, tree, forest, arboricity, cover index.
Mots-clés : decomposition
@article{SEMR_2017_14_a80,
     author = {A. N. Glebov},
     title = {An enhancement of {Nash--Williams'} {Theorem} on edge arboricity of graphs},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1324--1329},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a80/}
}
TY  - JOUR
AU  - A. N. Glebov
TI  - An enhancement of Nash--Williams' Theorem on edge arboricity of graphs
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 1324
EP  - 1329
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a80/
LA  - ru
ID  - SEMR_2017_14_a80
ER  - 
%0 Journal Article
%A A. N. Glebov
%T An enhancement of Nash--Williams' Theorem on edge arboricity of graphs
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 1324-1329
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a80/
%G ru
%F SEMR_2017_14_a80
A. N. Glebov. An enhancement of Nash--Williams' Theorem on edge arboricity of graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1324-1329. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a80/

[1] S. Akbari, T.R. Jensen, M. Siggers, “Decompositions of graphs into trees, forests, and regular subgraphs”, Discrete Math., 338:8 (2015), 1322–1327 | DOI | MR | Zbl

[2] B. Chen, M. Matsumoto, J.F. Wang, Z.F. Zhang, J.X. Zhang, “A short proof of Nash–Williams' theorem for the arboricity of a graph”, Graphs Combin., 10:1 (1994), 27–28 | DOI | MR | Zbl

[3] M. Chen, S.-J. Kim, A.V. Kostochka, D.B. West, X. Zhu, “Decomposition of sparse graphs into forests: The Nine Dragon Tree Conjecture for $k=2$”, J. Combin. Theory Ser. B, 122 (2017), 741–756 | DOI | MR | Zbl

[4] R.P. Gupta, Studies in the theory of graphs, Ph.D. Thesis, Tata Institute of Fundamental Research, Bombay, 1967

[5] R.P. Gupta, “On the chromatic index and the cover index of a multigraph”, Theory and Applications of Graphs, Lecture Notes in Mathematics, 642, eds. Y. Alavi, D.R. Lick, Springer, Berlin–Heidelberg, 1978, 204–215 | DOI | MR

[6] H. Jiang, D. Yang, “Decomposing a graph into forests: the nine dragon tree conjecture is true”, Combinatorica, 2016 (to appear)

[7] S.-J. Kim, A.V. Kostochka, H. Wu, D.B. West, X. Zhu, “Decomposition of sparse graphs into forests and a graph with bounded degree”, J. Combin. Theory Ser. B, 74:4 (2013), 369–391 | MR | Zbl

[8] M. Montassier, P. Ossona de Mendez, A. Raspaud, X. Zhu, “Decomposing a graph into forests”, J. Combin. Theory Ser. B, 102 (2012), 38–52 | DOI | MR | Zbl

[9] C.St.J.A. Nash-Williams, “Edge-disjoint spanning trees of finite graphs”, J. London Math. Soc., 36 (1961), 445–450 | DOI | MR | Zbl

[10] C.St.J.A. Nash-Williams, “Decomposition of finite graphs into forests”, J. London Math. Soc., 39 (1964), 12 | DOI | MR | Zbl

[11] C. Reiher, L. Sauermann, “Nash–Williams' theorem on decomposing graphs into forests”, Mathematika, 60:1 (2014), 32–36 | DOI | MR | Zbl

[12] W.T. Tutte, “On the problem of decomposing a graph into $n$ connected factors”, J. London Math. Soc., 36 (1961), 221–230 | DOI | MR | Zbl

[13] D. Yang, Decompose a graph into forests and a matching (to appear)