An enhancement of Nash--Williams' Theorem on edge arboricity of graphs
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1324-1329

Voir la notice de l'article provenant de la source Math-Net.Ru

The well-known Nash–Williams' Theorem states that for any positive integer $k$ a multigraph $G=(V,E)$ admits an edge decomposition into $k$ forests iff every subset $X\subseteq V$ induces a subgraph $G[X]$ with at most $k(|X|-1)$ edges. In this paper we prove that, under certain conditions, this decomposition can be chosen so that each forest contains no isolated vertices. More precisely, we prove that if either $G$ is a bipartite multigraph with minimum degree $\delta(G)\ge k$, or $k=2$ and $\delta(G)\ge 3$, then $G$ can be decomposed into $k$ forests without isolated vertices.
Keywords: graph, multigraph, tree, forest, arboricity, cover index.
Mots-clés : decomposition
@article{SEMR_2017_14_a80,
     author = {A. N. Glebov},
     title = {An enhancement of {Nash--Williams'} {Theorem} on edge arboricity of graphs},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1324--1329},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a80/}
}
TY  - JOUR
AU  - A. N. Glebov
TI  - An enhancement of Nash--Williams' Theorem on edge arboricity of graphs
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 1324
EP  - 1329
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a80/
LA  - ru
ID  - SEMR_2017_14_a80
ER  - 
%0 Journal Article
%A A. N. Glebov
%T An enhancement of Nash--Williams' Theorem on edge arboricity of graphs
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 1324-1329
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a80/
%G ru
%F SEMR_2017_14_a80
A. N. Glebov. An enhancement of Nash--Williams' Theorem on edge arboricity of graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1324-1329. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a80/