Vertex-transitive semi-triangular graphs with $\mu=7$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1198-1206

Voir la notice de l'article provenant de la source Math-Net.Ru

A semi-triangular Higman graph is a strongly regular graph with $v={m \choose 2}$, $k=2(m-2)$. The semi-triangular Higman graph with $\mu=7$ is pseudogeometric for $GQ(14,6)$. Previously, possible orders automorphisms of a pseudogeometric graph for $GQ(14,6)$ were found, and the structure subgraphs of fixed points of these automorphisms was determined. In this work we found a structure of nonsolvable group $G$ of automorphisms of a pseudogeometric graph for $GQ(14,6)$, acting transitively on the set of vertices of the graph.
Keywords: strongly regular graph
Mots-clés : automophism.
@article{SEMR_2017_14_a79,
     author = {N. D. Zyulyarkina and A. A. Makhnev and D. V. Paduchikh and M. M. Khamgokova},
     title = {Vertex-transitive semi-triangular graphs with $\mu=7$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1198--1206},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a79/}
}
TY  - JOUR
AU  - N. D. Zyulyarkina
AU  - A. A. Makhnev
AU  - D. V. Paduchikh
AU  - M. M. Khamgokova
TI  - Vertex-transitive semi-triangular graphs with $\mu=7$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 1198
EP  - 1206
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a79/
LA  - ru
ID  - SEMR_2017_14_a79
ER  - 
%0 Journal Article
%A N. D. Zyulyarkina
%A A. A. Makhnev
%A D. V. Paduchikh
%A M. M. Khamgokova
%T Vertex-transitive semi-triangular graphs with $\mu=7$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 1198-1206
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a79/
%G ru
%F SEMR_2017_14_a79
N. D. Zyulyarkina; A. A. Makhnev; D. V. Paduchikh; M. M. Khamgokova. Vertex-transitive semi-triangular graphs with $\mu=7$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1198-1206. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a79/