Vertex-transitive semi-triangular graphs with $\mu=7$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1198-1206.

Voir la notice de l'article provenant de la source Math-Net.Ru

A semi-triangular Higman graph is a strongly regular graph with $v={m \choose 2}$, $k=2(m-2)$. The semi-triangular Higman graph with $\mu=7$ is pseudogeometric for $GQ(14,6)$. Previously, possible orders automorphisms of a pseudogeometric graph for $GQ(14,6)$ were found, and the structure subgraphs of fixed points of these automorphisms was determined. In this work we found a structure of nonsolvable group $G$ of automorphisms of a pseudogeometric graph for $GQ(14,6)$, acting transitively on the set of vertices of the graph.
Keywords: strongly regular graph
Mots-clés : automophism.
@article{SEMR_2017_14_a79,
     author = {N. D. Zyulyarkina and A. A. Makhnev and D. V. Paduchikh and M. M. Khamgokova},
     title = {Vertex-transitive semi-triangular graphs with $\mu=7$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1198--1206},
     publisher = {mathdoc},
     volume = {14},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2017_14_a79/}
}
TY  - JOUR
AU  - N. D. Zyulyarkina
AU  - A. A. Makhnev
AU  - D. V. Paduchikh
AU  - M. M. Khamgokova
TI  - Vertex-transitive semi-triangular graphs with $\mu=7$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2017
SP  - 1198
EP  - 1206
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2017_14_a79/
LA  - ru
ID  - SEMR_2017_14_a79
ER  - 
%0 Journal Article
%A N. D. Zyulyarkina
%A A. A. Makhnev
%A D. V. Paduchikh
%A M. M. Khamgokova
%T Vertex-transitive semi-triangular graphs with $\mu=7$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2017
%P 1198-1206
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2017_14_a79/
%G ru
%F SEMR_2017_14_a79
N. D. Zyulyarkina; A. A. Makhnev; D. V. Paduchikh; M. M. Khamgokova. Vertex-transitive semi-triangular graphs with $\mu=7$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 14 (2017), pp. 1198-1206. http://geodesic.mathdoc.fr/item/SEMR_2017_14_a79/

[1] D.G. Higman, “Characterization of families of rank 3 permutation groups by the subdegrees, I”, Arch. Math., 21 (1970), 151–156 | DOI | MR | Zbl

[2] M.W. Liebeck, J. Saxl, “The finite primitive permutation groups of rank 3”, Bull. London Math. Soc., 18:2 (1986), 165–172 | DOI | MR | Zbl

[3] N.D. Zyulyarkina, A.A. Makhnev, “On automorphisms of semitriangular graphs with $\mu=7$”, Doklady Mathematics, 84:1 (2011), 450–453 | DOI | MR | Zbl

[4] S. Jansen, K. Lux, R. Parker, R. Wilson, ATLAS of Brauer Characters, London Math. Soc., New Series, 11, Oxford Science Publ., 1995 | MR | Zbl

[5] A.V. Zavarnitsine, “Finite simple groups with narrow prime spectrum”, Sibirean electr. Math. Reports, 6 (2009), 1–12 | MR | Zbl

[6] A.E. Brouwer, A.M. Cohen, A. Neumaier, Distance-Regular Graphs, Springer-Verlag, New York, 1989 | MR | Zbl